

Host Runtime

Transport Specification

Version 1.0

Published by

S2 Technologies, Inc.
2037 San Elijo Avenue
Cardiff, CA 92007 USA

The information in this document is subject to change without notice.
Copyright 2001 – 2009 S2 Technologies, Inc. All rights reserved.

S2 Technologies, the S2 Technologies logo, STRIDE, and the STRIDE logo are
trademarks of S2 Technologies, Inc. Microsoft, Windows, and Visual C++ are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. All other trademarks are the property of their respective owners.

Contents
1. About This Guide ... 3

1.1. Purpose ... 3
1.2. Document Conventions ... 3
1.3. Terms .. 3
1.4. PAL .. 4
1.5. SLAP ... 5
1.6. Related Documents ... 5

2. Host Transport Services ... 5
2.1. Introduction ... 5
2.2. Host Services .. 6

2.2.1. Stride Transport Methods .. 8

2.2.1.1. Connect ... 9

2.2.1.2. Disconnect ... 9

2.2.1.3. SendData ... 10

2.2.1.4. ReturnData .. 10

2.2.1.5. ValidateProperties ... 11

2.2.2. Transport Global Functions ... 12

2.2.2.1. getTransport .. 12

2.2.2.2. cleanupTransport ... 12

2.2.2.3. getAPIVersion .. 13

2.2.2.4. getTransportVersion .. 13
2.3. Building a Host Transport Services DLL ... 14

2.3.1. Required Naming Convention .. 14

2.3.2. Saving Settings .. 15
2.4. Existing DLLs .. 15

2.4.1. transportRS232.dll ... 15

2.4.2. transportTCP.dll ... 15

STRIDE Host Runtime Transport Specification

3

1. About This Guide

1.1. Purpose
This document provides background and customization information about the Host
Transport services. These host-based services represent the communication peer to the
PAL services on the target device.

Windows

Ethernet

Custom

Serial Line

Windows
Applications

STRIDE
Studio

RTOS / Scheduler

STRIDE Runtime

Platform Abstraction Layer (PAL)

Thread

STRIDE DEVELOPMENT ENVIRONMENT
Host Target Platform

Host Transport Services

STRIDE Runtime

Intercept
Code

function

Figure 1. STRIDE Embedded Software Verification Platform

1.2. Document Conventions
This document uses the following conventions:

… Indicates time passing, activity

Indicates the developer should take special care to avoid errors

 Indicates additional information that could affect performance

 Indicates interface through use of messaging

1.3. Terms

I-block STRIDE Communication Model (SCM) term for a packet of data
transferred between platforms

message A communication mechanism between two threads

module A file containing one (1) or more functions

STRIDE Host Runtime Transport Specification

4

NID Notification Identifier

pool memory Memory allocated from a common pool used by application threads

private memory Non-pool memory that is owned by a sending application thread

process Implies a separate address space which typically does not apply to a
task or thread

proxy Software that uses an interface to connect a user to a remote device

public interface Exposed to another component/unit

RFC Remote function call

sender The originator of a message

stub Temporary code written to replace a unit that has yet to be written or
is otherwise unavailable

task Often used interchangeably with “thread”

thread An independent entity running under the control of an Operating
System

Transport DLL A plug-in library that provides methods for transmitting STRIDE
messages to/from the target.

Transport Server Manages the connection between the Host and Target, using a single
active Transport DLL to create the connection and send/receive data.

1.4. PAL
The PAL, or Platform Abstraction Layer, provides a consistent interface for the STRIDE
Runtime regardless of the operating system or data transport used. This interface layer is
necessary given the broad variety of operating systems and data transports that exist
within embedded systems today.

A small set of functions, written according to the PAL specification, provides a virtual
link between your operating system and platform transport mechanism to the STRIDE
Runtime. Through the Platform Abstraction Layer, the STRIDE Runtime becomes
independent of any specific operating system or transport. The PAL is designed to use
standard concepts and services present in almost all operating systems and transport
mechanisms. To complete the PAL, you’ll need to be familiar with concepts such as
event signaling, scheduling, timers, critical section protection, memory allocation and
data transfers, all of which are described in detail in the STRIDE Platform Abstraction
Layer Specification .

The “pal.h” header file provided with the STRIDE installation contains all the function
prototypes necessary for writing the PAL. The pal.h header file is provided in the
STRIDE Platform Abstraction Layer Specification .

STRIDE Host Runtime Transport Specification

5

1.5. SLAP
The Simplified Link Application Protocol (SLAP) is a link protocol that is used to
transmit and receive frames of data between two platforms. The sole purpose of the
SLAP is to guarantee that frames are successfully transmitted between the two platforms.

The SLAP verifies the integrity of the data contained within the frame and is able to
resynchronize quickly in the event of missed frames. This is accomplished through the
use of “data stuffing”.

More detailed description of SLAP is provided in the STRIDE Platform Abstraction
Layer Specification .

1.6. Related Documents
The following publications are also available through STRIDE Online Help:

STRIDE Platform Abstraction Layer Specification
STRIDE Runtime Developer’s Guide

STRIDE Communication Language Reference Guide

2. Host Transport Services

2.1. Introduction
The Host Transport Services define an interface that enables the STRIDE Runtime on
your target to send data to and receive data from the target. The host platform runs a
version of the STRIDE Runtime -- the STRIDE Transport Server connects the Transport
DLL to the STRIDE Runtime, thus providing indirect access to the target from STRIDE
Studio, Autoscript, and other STRIDE applications. Several common transports are
already supported within the STRIDE Transport Server, including serial and TCP/IP.

Transport Services

STRIDE Runtime
palOut(..)

palIn<callback>(..)

STRIDE Runtime

PAL IO ServicesSTRIDE Transport Server

Transport.dll

HardwareWindows

OS Hardware Services

palOut(..)
palIn<callback>(..)

I-blocks

Host Platform Target Platform

STRIDE Host Runtime Transport Specification

6

Figure 2. Transport Block Diagram

2.2. Host Services
The Host Transport Services allow the STRIDE Transport Server on the host to connect
with the native target transport mechanism. The Host Transport Services are defined in
“transport.h” and each Transport DLL must implement a concrete class derived from
IStrideTransport. Each implementation of such a class must implement the four methods
listed in Table 2.

Table 1. IStrideTransport Required Methods

Method Name Description

Connect Establish a connection with the device.

Disconnect Close or terminate the connection with the
device.

SendData Send data from the host to the target.

ValidateProperties Validate the current state of the transports
properties.

In addition, the transport implementation must arrange to receive incoming data from the
target. This is often done in a separate thread whose lifetime is tied to the connection
state of the transport (i.e. the thread is only active when as the transport is connected).
When this background thread receives data, it should call the ReturnData method on the
StrideTransport instance to send the data to the Transport Server and eventually into the
STRIDE Runtime.

The StrideTransport base class provides default implementations of the following
methods. These default implementations should be sufficient for most needs, but the
methods can be overridden as needed.

Table 3. IStrideTransport Inherited Methods

Method Name Description

AddListener Adds a subscriber to this Transport DLL. This
method is called by the Transport Server to
subscribe to the data and error events
described by the IStrideTransportListener
interface.

RemoveListener Removes a subscriber.

Name Returns the transport name.

Status Returns the current ConnectStatus value.

STRIDE Host Runtime Transport Specification

7

Properties Returns the current PropertyList container.

ReturnData Send incoming data back to the Transport
Server for routing to the host runtime. This
method should be called by the Transport DLL
whenever it receives a complete STRIDE
message from the Target device.

DumpData Send raw data buffer to the TransportServer
for inclusion in the application log (under
option). When the TransportDataDump
property is enabled (in the Transport Server) ,
any buffers sent via this method will be written
in human readable form to the STRIDE
application log.

QueueData Used to queue data (bytes) for eventual
dumping. This is useful when received data is
not known to be a complete STRIDE message
until subsequent data is received.

DumpQueue Causes any data in the current queue to be
dumped (by calling DumpData).

SendEvent Publishes an event to all current listeners. The
event consists of a message string, a type, and
a level (or severity).

ConnectNotify Notifies all listeners when the status has
transitioned to CONNECTED.

DisconnectNotify Notifies all listeners when the status has
transitioned to DISCONNECTED.

Each Transport DLL must also implement four global methods to provide a basic object
factory and API version information.

Table 3. Required Global Functions

Method Name Description

getTransport Returns an instance of the StrideTransport
object that your DLL implements. The current
use model in the Transport Server requires that
the created instance be a singleton (i.e. the
same object instance must be returned by all
calls to getTransport)

cleanupTransport Called when the transport is unloaded to allow
the singleton transport object instance to be

STRIDE Host Runtime Transport Specification

8

freed and any other resources to be
deallocated.

getAPIVersion Must return the value of
TRANSPORT_API_VERSION for which the
transport was compiled.

getTransportVersion Returns a version number for the Transport
DLL. This value is not currently used by the
Transport Server.

2.2.1. Stride Transport Methods
The “transport.h” header file defines the following interface to be implemented by a class
in the Transport DLLs:

/**
* @class IStrideTransport
* Abstract class interface to be implemented by transport libraries.
**/
public:
 enum ConnectStatus {
 ConnectStatusDisconnected = 0,
 ConnectStatusConnected
 };
 typedef std::vector<std::wstring> ErrorList;
 typedef std::vector<IStrideTransportProperty*> PropertyList;

 virtual bool SendData(const unsigned char* data, long size) = 0;
 virtual ErrorList ValidateProperties() = 0;
 virtual bool Connect() = 0;
 virtual bool Disconnect() = 0;
 virtual void AddListener(IStrideTransportListener* pListener);
 virtual void RemoveListener(IStrideTransportListener* pListener);
 virtual const std::wstring & Name() const ;
 virtual ConnectStatus Status() const ;
 virtual const PropertyList & Properties() const ;
 virtual bool ReturnData(const unsigned char* data, long size)size);
 virtual bool DumpData(
 const unsigned char* data,
 long size,
 IStrideTransportListener::DumpType type);
 virtual bool QueueData(
 const unsigned char* data,
 long size,
 IStrideTransportListener::DumpType type);
 virtual bool DumpQueue(IStrideTransportListener::DumpType type);
 virtual void SendEvent(
 const std::wstring & message,
 const IStrideTransportListener::EventType & type,
 const IStrideTransportListener::EventLevel & level);

protected:
 typedef std::set<IStrideTransportListener*> ListenerList;

 IStrideTransport(const std::wstring & name) :
 m_Name(name),

STRIDE Host Runtime Transport Specification

9

 m_Status(ConnectStatusDisconnected);
 virtual ~IStrideTransport();
 virtual bool ConnectNotify();
 virtual bool DisconnectNotify();

 PropertyList m_SupportedProperties;
 ListenerList m_Listeners;
 ConnectStatus m_Status;
 std::ostringstream m_ReadDumpQueue;
 std::ostringstream m_SendDumpQueue;
private:
 std::wstring m_Name;

};

2.2.1.1. Connect

Establish a connection

Prototype
bool Connect();

Description
The Connect() method is called to establish the connection for the transport. This often
involves checking the current connection properties and opening the physical devices
required for the connection. This method returns a bool status to indicate whether the
connection was successfully started.
Parameters Type Description

None

Return Type Values Description

bool true Connection established

 false Connection attempt failed.

2.2.1.2. Disconnect

Terminate a connection

Prototype
bool Disconnect();

Description
The Disconnect() method is called to terminate the connection for the transport. This
typically involves closing any physical devices used for the connection and freeing
resources. This method returns a bool status to indicate whether the disconnection request
was successful.

STRIDE Host Runtime Transport Specification

10

Parameters Type Description

None

Return Type Values Description

bool true Disconnect succeeded

 false Error encountered during disconnect

2.2.1.3. SendData

Send data from host to target

Prototype
bool SendData(const unsigned char* data, long size);

Description
The SendData() method is called by the Transport Server to send data from the Host
Runtime to the target device. This method returns a bool status to indicate whether the
data transfer was successful. This method must be implemented by each Transport DLL
and it is only called by the Transport Server. If the Transport DLL is unable to send the
data, it should publish an error event to the listeners (using SendEvent or one of the
S2TP_ macros) and return false. The Transport Server will log any failed calls to
SendData, but it will not attempt to resend the data. If retries are appropriate for a given
transport, the Transport DLL must implement the retry logic in its SendData method.
Parameters Type Description

data Input Data buffer to send via the transport. This
buffer is owned by the caller and should not be
freed by the Transport DLL.

size Input Size of data in bytes.

Return Type Values Description

bool true Data sent

 false Data submission failed

2.2.1.4. ReturnData

Return data from target to host

Prototype
bool ReturnData(const unsigned char* data, long size);

STRIDE Host Runtime Transport Specification

11

Description
The ReturnData() method is called by the Transport DLL to feed data from the target
device into the STRIDE Runtime (via the Transport Server). This method returns a bool
status to indicate whether the data was successfully submitted. The default
implementation that exists in the IStrideTransport base class should be sufficient for most
transports. The Transport DLL implementer must arrange to read incoming data from the
connection (typically in a background thread) and then call ReturnData for all data that is
received. This method requires complete STRIDE messages, thus framing (e.g. SLAP) is
typically required to guarantee that complete STRIDE messages are give to this method.
Parameters Type Description

data Input Data buffer to submit

size Input Size of data in data, in bytes

Return Type Values Description

bool true Data submitted

 false Data submission failed.

2.2.1.5. ValidateProperties

Validate the current transport property values.

Prototype
ErrorList ValidateProperties();

Description
The ValidateProperties() method is called by clients of the TransportServer to verify
that the current property values are legitimate. The Transport implementation should
check the current property settings for valid ranges and values as appropriate for the
particular transport. This method returns an ErrorList type (vector of strings) that
contains error information about invalid properties. If all the properties have valid
values, this method should return an empty ErrorList.
Parameters Type Description

None

Return Type Values Description

ErrorList empty All properties are valid.

 Non-empty One more properties are invalid. The
Elements of ErrorList contain specific
information about each validation failure.

STRIDE Host Runtime Transport Specification

12

2.2.2. Transport Global Functions

2.2.2.1. getTransport

Create a singleton of the Transport Class object.

Prototype
IStrideTransport* getTransport();

Description
The getTransport() function is called by the Transport Server to get an instance of the
class that implements the IStrideTransport interface in the Transport DLL. By
convention, this method should create a new instance of the class upon first call and
should return the same instance (singleton) with each subsequent call. The transport can
free that instance when cleanupTransport is called.
Parameters Type Description

None

Return Type Values Description

IStrideTransport* Valid
object

The object instance has been created

 NULL There was an error creating the Stride
Transport object.

2.2.2.2. cleanupTransport

Allow the transport DLL to free singleton instance.

Prototype
void cleanupTransport();

Description
The cleanupTransport() function is called by the Transport Server when it is no longer
actively using that transport DLL. By convention, this method should free the singleton
instance of the Stride Transport object that was created by getInstance. It can also free
any additional resources that might have been allocated by getInstance.
Parameters Type Description

None

STRIDE Host Runtime Transport Specification

13

Return Type Values Description

None

2.2.2.3. getAPIVersion

Returns the Stride Transport API version of the Transport DLL.

Prototype
long getAPIVersion();

Description
The getAPIVersion() function is called by the Transport Server to get the
TRANSPORT_API_VERSION value for which the Transport DLL was compiled. The
Transport Server reads this value to make sure it is compiled against the same version of
“transport.h” as the Transport DLL is.
Parameters Type Description

None

Return Type Values Description

long 1 The first version of “transport.h”. This is the
only value that is currently supported.

2.2.2.4. getTransportVersion

Returns the Transport DLL version.

Prototype
long getTransportVersion();

Description
The getTransportVersion() function is called by the Transport Server to get a Transport
specific version value. The Transport Server does not current use this value but might
choose to in the future. As such, this value is currently determined by the Transport DLL
author and has no direct impact on how the transport is loaded or used.
Parameters Type Description

None

Return Type Values Description

STRIDE Host Runtime Transport Specification

14

long Any The current version of the transport, as
determined by the author.

2.3. Building a Host Transport Services DLL
Developers can create custom Transport DLLs as necessary to implement target
communication using protocols other than basic serial and TCP/IP. The following
outlines the steps required to create a custom Transport DLL.

1. Create a new C++ Win32 DLL using Microsoft Visual Studio (express editions
are fine).

2. Add STRIDE_DIR\inc to the project include path.

3. If using SLAP framing, add SLAP header and source files to the project.

4. Add STRIDE_TRANSPORT preprocessor definition.

5. Specify the Multithread DLL version of the MSVC runtime.

6. Declare a class that inherits from IStrideTransport.

7. Make sure that your class constructor calls the IStrideTransport constructor with a
single wide-string argument – the name you want to give to your transport. To
avoid confusion, we recommend appending “(debug)” to the name for debug
conifigurations (this allows you to use both debug and release builds of the
transport in the same transport server).

8. Setup your transports properties in the constructor as well.

9. Declare and implement the Connect method.

10. Declare and implement the Disconnect method.

11. Declare and implement the SendData method.

12. Declare and implement the ValidateProperties method.

13. Create a background thread to receive incoming data from the target. This thread
should call the ReturnData method (already implemented by the IStrideTransport
base class)

14. Set the project output to the STRIDE_DIR\transports directory so the DLL will be
found by the transport server.

15. Build the project and verify that it is loaded by the Transport Server (you can use
the Studio connection settings dialog for this).

2.3.1. Required Naming Convention
A Host Transport DLL must follow this naming convention (where <name> is selected
by the transport author to insure a unique file name):

transport<name>.dll

STRIDE Host Runtime Transport Specification

15

2.3.2. Saving Settings
The Transport DLLs support get and set operations for all properties that they expose via
the Properties() method. The transport server does not persist any property state for
transports, but STRIDE Studio does. Users can select property settings and the active
transport to use for connections in Studio. These settings are saved across invocations of
Studio and are only valid when connecting using STRIDE Studio.

2.4. Existing DLLs
Several Transport DLLs are available with the standard STRIDE host installation.
Transport DLLs are installed into <STRIDE_DIR>\transports directory.

2.4.1. transportRS232.dll
This transport uses a standard serial port with data framed by SLAP. It supports the
standard COM port data settings via its properties (baud rate, data bits, etc.).

2.4.2. transportTCP.dll
This transport is used to connect to a target over a TCP connection. This DLL uses SLAP
to frame the data before sending it, and decodes a SLAP frame on the receive side. The
transport tries to establish a TCP/IP client connection to a listening device. The device
address (or DNS name) and TCP port number are configurable properties of the transport.

Copyright 2008 S2 Technologies, Inc. 16

	Contents
	1. About This Guide
	1.1. Purpose
	1.2. Document Conventions
	1.3. Terms
	1.4. PAL
	1.5. SLAP
	1.6. Related Documents

	2. Host Transport Services
	2.1. Introduction
	2.2. Host Services
	2.2.1. Stride Transport Methods
	2.2.1.1. Connect

	Establish a connection
	Description
	2.2.1.2. Disconnect

	Terminate a connection
	Description
	2.2.1.3. SendData

	Send data from host to target
	Description
	2.2.1.4. ReturnData

	Return data from target to host
	Description
	2.2.1.5. ValidateProperties

	Validate the current transport property values.
	Description
	2.2.2. Transport Global Functions
	2.2.2.1. getTransport

	Create a singleton of the Transport Class object.
	Description
	2.2.2.2. cleanupTransport

	Allow the transport DLL to free singleton instance.
	Description
	2.2.2.3. getAPIVersion

	Returns the Stride Transport API version of the Transport DLL.
	Description
	2.2.2.4. getTransportVersion

	Returns the Transport DLL version.
	Description
	2.3. Building a Host Transport Services DLL
	2.3.1. Required Naming Convention
	2.3.2. Saving Settings

	2.4. Existing DLLs
	2.4.1. transportRS232.dll
	2.4.2. transportTCP.dll

