

Runtime Developer’s Guide

Version 4.01

Published by

S2 Technologies, Inc.
2037 San Elijo Avenue
Cardiff, CA 92007 USA

The information in this document is subject to change without notice.
Copyright 2001 – 2010 S2 Technologies, Inc. All rights reserved.

S2 Technologies, the S2 Technologies logo, STRIDE, and the STRIDE logo are
trademarks of S2 Technologies, Inc. Microsoft, Windows, and Visual C++ are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. All other trademarks are the property of their respective owners.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 1

Contents
Contents ... 1

About this Guide .. 6

Purpose ... 6

Document Conventions ... 6

Standard Data Types .. 6

Standard Defines .. 7

Hungarian Notation for Variables .. 7

Naming Conventions ... 8

Terms .. 10

Related Documents ... 12

1. Using the STRIDE Runtime ... 13

1.1. Overview .. 13

1.1.1. STRIDE Message ID (SMID) .. 14

1.1.2. STRIDE Unique ID (SUID) ... 17

1.1.3. STRIDE Transactor ID (STID) .. 17

1.1.4. STRIDE Trace Point ID (STPID) .. 17

1.1.5. STRIDE Response ID (SRID) .. 18

1.1.6. Notification of Traffic ID (NID) .. 18

1.2. Memory Requirements ... 19

1.2.1. Messaging Memory .. 20

1.2.2. Tracing Memory .. 22

1.2.3. Transport Settings .. 23

1.2.4. Memory Management ... 23

1.2.5. Multi-Process Target .. 24

1.3. Using the API ... 25

1.3.1. Creating an STID .. 25

STRIDE Runtime Developer’s Guide

2 Copyright © 2001 – 2010 S2 Technologies, Inc.

1.3.2. Creating a STRIDE Message ... 25

1.3.3. Registering Messages .. 27

1.3.4. Overriding Registration ... 28

1.3.5. Subscribing to Messages ... 28

1.3.6. Reading and Sending Messages ... 28

1.3.7. Using Pointers .. 30

1.3.8. Returning Message Memory .. 31

1.3.9. Pointer Memory Policies ... 32

1.3.10. Trace Points ... 33

1.3.11. Data Format Conformance ... 33

1.4. Routing with Access Class Registration .. 33

1.4.1. Remote Messaging (RM) Overview ... 34

1.4.2. Access Class Intercept Module .. 34

1.5. Connecting to the Host .. 35

1.5.1. Connection Settings ... 35

2. Remote Messaging (RM) ... 36

2.1. Implementing a Remote Messaging Service ... 37

2.1.1. How It Works .. 37

2.1.2. Issues to Consider .. 38

2.1.3. Translating between STRIDE and Native Message IDs .. 39

2.2. Using a Remote Message Stub (RMS) .. 39

2.2.1. Remote Message Stub Thread Setup .. 40

2.2.2. Remote Message Stub Thread Messages ... 40

2.2.3. How to Handle Responses ... 41

2.2.4. Binding Native Commands with Native Responses ... 42

2.2.5. Wait Event .. 42

2.2.6. Subscriptions and Broadcasts .. 42

2.2.7. Pointers... 43

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 3

2.2.8. Message Tracing .. 43

2.2.9. Remote Message Stub Thread Example ... 43

2.3. Using a Remote Message Proxy (RMP) .. 45

2.3.1. Remote Message Proxy Routing .. 46

2.3.2. Binding Native Commands with Native Responses ... 46

2.3.3. Receiving STRIDE Responses – Sending Native Responses 47

3. Runtime API Services ... 48

3.1. Setup and Shutdown .. 49

srInit() .. 50

srUninit() ... 51

srCreateSTID() ... 52

srDeleteSTID() .. 54

3.2. Messaging .. 55

srRegister() ... 56

srRegisterAccessClass() .. 58

srRead() .. 60

srReadComplete() .. 63

srSendCmd() .. 65

srSendRsp() .. 67

srBroadcast() .. 70

srSubscribe() .. 73

srSetAuxData() ... 75

srGetAuxData() ... 77

3.3. Pointers .. 79

srPtrSetup() .. 80

srPtrSetupChild() .. 83

srPtrTeardown() .. 86

srPtrGetHandle() .. 88

STRIDE Runtime Developer’s Guide

4 Copyright © 2001 – 2010 S2 Technologies, Inc.

srPtrSize() ... 90

srPtrCreateCmdInst() ... 93

srPtrCreateRspInst() ... 94

srPtrDeleteInst() ... 95

3.4. Tracing ... 96

srTracePoint() ... 97

srTraceStr() ... 99

srTraceInterface() ... 101

3.5. Printing ... 102

srPrintInfo() ... 103

srPrintError() ... 104

3.6. Query ... 105

srQueryAccessClass() .. 106

srQueryNID() .. 107

srQueryName() ... 108

srQuerySMID().. 109

srQueryBox() .. 111

3.7. Access Class (Remote Messaging) Routines .. 112

3.8. I-block ... 113

srIBlockOutReady() .. 113

3.9. Runtime Thread Entry and Exit Points ... 114

srThread() ... 115

srThreadInit() .. 116

srThreadUninit() .. 117

srThreadProc() ... 118

3.10. Host Override Routines .. 119

srHostShutdownIM() ... 120

3.11. Connecting ... 122

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 5

srCONNECT_OPEN_T_SMID ... 123

srCONNECT_CLOSE_T_SMID ... 124

srCONNECT_STATUS_B_SMID ... 125

srCONNECT_STATUS_T_SMID ... 127

3.12. Database Loading Routines ... 128

srHOST_LOAD_DB_O_SMID .. 129

srHOST_LOAD_DB_STATUS_B_SMID .. 130

srHOST_LOAD_DB_STATUS_T_SMID .. 133

3.13. Trace Buffers .. 135

srTRACE_BUFFER_B_SMID ... 135

3.13.1. Trace Filtering ... 137

3.14. Subscriber Information ... 139

srSUBSCRIBERS_LOCAL_B_SMID ... 140

srSUBSCRIBERS_REMOTE_B_SMID .. 141

3.15. Marshaling Errors ... 142

srERROR_MARSHAL_B_SMID ... 143

4. STRIDE Runtime Internals .. 144

4.1. STRIDE Runtime Thread and Procedure .. 144

4.2. STRIDE Runtime Modules ... 144

4.3. STRIDE Runtime Files ... 146

Appendix A: STRIDE Runtime API (sr.h) .. 148

Appendix B: STRIDE Runtime Configuration (srcfg.h) .. 157

STRIDE Runtime Developer’s Guide

6 Copyright © 2001 – 2010 S2 Technologies, Inc.

About this Guide

Purpose

The STRIDE Runtime Developer’s Guide provides information you need to use the
STRIDE Runtime. It also includes the API services, message services, and header files.

Document Conventions

The following symbols indicate specific activites, events or notes for the developer:

… Time passing or activity

Take special care to avoid errors

Notes, remarks or additional information that could affect
performance

 Interface through use of messaging

Standard Data Types

The STRIDE Runtime uses the following standard basic data types as shown in Standard
Data Types below. These types are provided to help self-document the interfaces. The
sizes of these types are based on the Platform Abstraction Layer (PAL) standard types
found in pal.h. (See the STRIDE Platform Abstraction Layer Specification.)

typedef palCHAR srCHAR;
typedef palBYTE srBYTE;
typedef palSHORT srSHORT;
typedef palWORD srWORD;
typedef palLONG srLONG;
typedef palDWORD srDWORD;
typedef palBOOL srBOOL;

Figure 1: Standard Data Types

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 7

Standard Defines

The STRIDE Runtime also defines TRUE, FALSE and NULL based on standard
definitions.

#define srFALSE palFALSE
#define srTRUE palTRUE
#define srNULL palNULL

Figure 2: Standard Defines

Hungarian Notation for Variables

The naming convention for variables used by the runtime API follows a modified version
of the Hungarian notation. Each variable name begins with one or more lowercase
characters identifying the type of the variable. Of special note are the enumeration type
and the more general typedef. The “_e” notation indicates that an enum typedef is being
used. The “_t” indicates a general typedef. Variables declared as an enumeration or a
general typedef will use “e” or “t” in the prefix.

STRIDE Runtime Developer’s Guide

8 Copyright © 2001 – 2010 S2 Technologies, Inc.

Hungarian Notation

Prefix Meaning Example
c char palCHAR cMyChar;
y unsigned char palBYTE yMyByte;
n short palSHORT nMyShort;
w unsigned short palWORD wMyWord;
l long palLONG lMyLong;
dw unsigned long palDWORD dMyDWord;
b Boolean palBOOL bMyBool;
e enumeration <Name>_e eMyEnum;
t typedef <Name>_t tMyTypedef;
p pointer palBOOL *pbMyPtrBool;
sz zero terminated string palCHAR *szMyString;

Naming Conventions

All public header files, prototypes, data types, constants, and variables use the component
tag (i.e., lower case “sr”) as a prefix. The following naming conventions are used:

Public API Naming Conventions

Item Convention Example
Files <tag><name>.h | .c srCfg.h
Prototypes <tag><Name>(…) srMyFunction(..)
Typedefs <tag><Name>_t srMyType_t
Constants <tag><NAME>{_<NAME>} srMY_CONSTANT
Enumeration <tag><Name>_e srMyEnum_e
Enumerator <tag><NAME>{_<NAME>} srMY_ENUMERATOR

All private files also use the component tag as well as the module name. Private
prototypes and variables whose scope is global insert an additional underscore (“_”) in
front of the component tag as a prefix. Static variables defined within a module and local
constants and typedefs do not follow any specific convention.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 9

Private API Naming Conventions

Item Convention Example
Files <tag><module-name>.h Example: srmod.h
 <tag><module-name>.c Example: srmod.c
Prototypes _<tag><Module-name>_<Name>(…) Example: _srMod_Func(..)
Variable _<tag><Module-name>_<Name> Example: _srMod_Variable
Typedefs <Module-name>_<Name>_t Example: Mod_Type_t
Constants <Module-name>_<NAME>{_<NAME>} Example: MOD_CONSTANT
Enumeration <Module-name>_<Name>_e Example: Mod_Enum_e
Enumerator <Module-name>_<NAME>{_<NAME>} Example: MOD_ENUMERATOR

STRIDE Runtime Developer’s Guide

10 Copyright © 2001 – 2010 S2 Technologies, Inc.

Terms

broadcast To send a response to one or more subscribers.

A unidirectional message in which one or more Owners
sends a response to one or more Users. The Owner
independently sends the message and the runtime is
responsible for routing the message based on a subscriber
list.

command A message sent from a User to an Owner

component tag Letters in the name of an API or source file that identifies a
group of releated functionality (example: “err” is used for the
component tag for the files and APIs releated to error
routines in the source code)

Pointer Entry A STRIDE Runtime data structure used for holding a single
pointer’s information.

EPE Pointer Entry

I-block STRIDE Communication Model (SCM) term for a packet of
data transferred between platforms

mailbox Logical ID for a runtime message queue

MCB Message Control Block

message A communication mechanism between two threads.

message type One-way, two-way, or broadcast.

MID Message Identifier

MQE Message Queue Entry

MSE Message Subscribe Entry

NID Notification Identifier – a unique 32-bit value used by the pal
notify routine to notify an STID of a pending message; used
by the native platform when performing synchronization
services.

Owner A thread that reads a command and or sends a response

PAL Platform Abstraction Layer

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 11

payload The data portion of a message or TracePoint

pool memory Memory allocated from a common pool used by application
threads

private memory Non-pool memory that is owned by a sending application
thread

process Implies a separate address space which typically does not
apply to a task or thread

public memory Memory that is accessable and usable by all threads in a
system

Reader The receiver of a message

response A message sent from an Owner to a User

RTOS Real-Time Operating System

SCB STRIDE Transact Identifier (STID) Control Block

SCIP STRIDE Communication Inter-platform Protocol

SMID STRIDE Message Identifier. The SMID is a 32-bit structure
consisting of a unique ID and a set of message attributes.
The SCM defines the SUID portion as the first 24 bits of the
SMID (bits 0 — 23), allowing unique identifiers up to
16,777,215. The message attributes use the highest 8 bits of
the SMID (bits 24 — 31).

STID STRIDE Transactor Identifer. The STID is a unique 8-bit
value used to represent messaging and tracing operations
associated with a native thread as defined by an operating
system. STIDs provide a link between the STRIDE
transactor and application native transactor IDs.

STPID STRIDE Trace Point Identifier. The STPID consists of a
unique 32-bit ID and an optional payload, and is used for
trace points. The STPID value of zero (0) is reserved for the
system. There are no constraints on different application
threads using the same trace point.

SUID STRIDE Unique Identifier. The SUID is a unique 24-bit
value used to identify interfaces such as function calls and
messages.

STRIDE Runtime Developer’s Guide

12 Copyright © 2001 – 2010 S2 Technologies, Inc.

Related Documents

Other documents available through STRIDE Online Help include the following:

• STRIDE Host Transport Specification

• STRIDE Platform Abstraction Layer (PAL) Specification

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 13

1. Using the STRIDE Runtime

1.1. Overview

STRIDE Runtime is a software package that provides services for messaging, remote
function calls, and tracing while providing seamless connectivity between the target
application and host operating system. STRIDE Runtime standardizes how threads and
applications communicate with each other independent of the platform on which they are
executing. This eliminates the need to integrate new software on the target hardware all at
one time. Developers can incrementally integrate embedded software on a combination of
the desktop environment and the target hardware, providing more control over the
integration phase. Threads can be divided up between the two platforms without
requiring changes to the software. New software functionality currently under
development can be easily simulated on the desktop environment while the software
using this new functionality can run on the target hardware. The flexibility of choosing
how to integrate different pieces of software and the platform it should run on enables
developers to detect integration problems earlier in the development process and to
correct defects while the impact of the defects is still minimal.

STRIDE Runtime is written in ANSI C and is partitioned into two functional groups, the
STRIDE APIs and the STRIDE Runtime Thread. The STRIDE APIs are a set of public
and private routines that run out of the context of the calling thread. These APIs support
the public APIs defined in the sr.h header file. The STRIDE Runtime Thread is an
independent thread that has its own context when executing. The Runtime Thread
supports the public mail-based API defined in the srmsg.h header file.

Before STRIDE Runtime can be used on the target platform the messaging and tracing
configurable memory must be set up and a Platform Abstaction Layer (PAL) must be
implemented. The configurable memory is statically defined by the constants found in the
srcfg.h file. The configurable memory is allocated at compile time and the memory
resource requirements can be calculated beforehand. The srcfg.h header file allows
customization of this memory based on individual projects.

The PAL defines the set of OS functionality required by the platform to support the
STRIDE Runtime. The pal.h header file defines the PAL functionality. The PAL also
defines functionality required by the STRIDE Runtime to transmit and receive packets of
data (called I-blocks) using the platform’s transport mechanism. These PAL routines
enable the STRIDE Runtime to be installed on diverse environments without changing its
internal design.

STRIDE Runtime Developer’s Guide

14 Copyright © 2001 – 2010 S2 Technologies, Inc.

Once the memory has been configured and the PAL functionality implemented, the
STRIDE Runtime services can be used by the application threads. For projects that do not
want their application threads to use the API directly, a wrapper can be used or a remote
message stub thread can be written. A remote message stub thread involves the target
environment implementation of a STRIDE Runtime-specific thread whose main objective
is to map SCL-compliant messages from the host to their native target environment. The
application threads do not change how they currently use messaging, rather the remote
message stub thread maps to their environment. Refer to section 2.2 Using a Remote
Message Stub (RMS) for more details.

The following unique identifiers facilitate a variety of tasks performed by the STRIDE
Runtime, such as message ID handling, memory management, payload routing, and data
format conformance:

1.1.1. STRIDE Message ID (SMID)

The SMID is a unique message ID and a set of attributes associated with the message.
The SCM defines the SUID portion as the low order 24 bits of the SMID (bits 0 thru 23),
allowing unique identifiers between zero and 224-1. The attributes are stored in bits 24
thru 29. Bits 30 and 31 are reserved and must be set to 0 for all user-defined SMIDs.
Each SCL-compliant message must be assigned a unique message ID. The format of the
STRIDE message ID is illustrated below:

AC Pur Puc Str Stc Mt

31 30 29 28 27 26 25 24 23 0

SUID

The Message Type (MT) attribute defines the type of message being used for
communication between the Owner and User. The following values are used for different
message types:

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 15

Message Type (Mt) Values

Meaning Value
One way command 0
One way response 1
Two way command/response 2
Broadcastg 3

The Send Type (ST) attribute is used to indicate how to transmit the payload. There are
two ways to send the payload: by value or by pointer. The STRIDE Runtime uses the ST
attribute when determining whether to route locally or remotely across platform
boundaries. The following tables describe the ST attribute settings:

SendType for Command (STc) Values

Meaning Value
By Pointer (combined with NULL
data value means no payload)

0

By Value 1

SendType for Response (STr) Values

Meaning Value
By Pointer (combined with NULL
data value means no payload)

0

By Value 1

STRIDE Runtime Developer’s Guide

16 Copyright © 2001 – 2010 S2 Technologies, Inc.

When a payload is passed by pointer, a Pointer Usage (PU) attribute is required.
Otherwise the value of the PU is ignored. The PU attribute indicates if the payload is
using pool memory or private memory. When the PU attribute indicates pool, the SCM
requires that the memory be allocated from a common pool. When the PU attribute
indicates private, the STRIDE Runtime environment makes no assumptions on how the
payload memory is being managed between the Owner and User when they are executing
on the same target platform. If the payload crosses platform boundaries, however, the
Runtime is required to dynamically allocate memory from the common pool. The
temporary memory that is allocated is used to hold the payload, and the address of the
memory is passed to the reader. Once the reader returns the message memory to the
Runtime, the temporary memory is automatically freed. The original memory from the
sender is not affected or synchronized with the other platform. The PU attributes are
listed below:

Pointer Usage for Command (PUc) Values

Meaning Value
Pool 0
Private 1

Pointer Usage for Response (PUr) Values

Meaning Value
Pool 0
Private 1

The Access Class (AC) attribute ensures that the intercept module will not register each
SUID, and function calls with no registered owner will be routed to the intercept module
STID. The AC attributes are listed below

Access Class (AC) Values

Meaning Value
Message 0
Function 1
System/Application 2
Reserved 3

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 17

1.1.2. STRIDE Unique ID (SUID)

The STRIDE Unique ID (SUID) is a unique 24-bit value used to identify interfaces such
as remote function calls and messages. A SUID is required when using a two-way
message in order to identify the message user and allow the response payload to be
routed correctly. The message user provides this unique ID to the STRIDE Runtime,
which in turn sends it to the message owner. The message owner is then required to
supply this same unique ID when sending a response back to the STRIDE Runtime, so
that the response payload can be routed correctly.

1.1.3. STRIDE Transactor ID (STID)

The STRIDE Transactor ID (STID) is a unique 8-bit value used to represent messaging
and tracing operations associated with a native thread as defined by an operating system.
STIDs provide a link between the STRIDE transactor and application native transactor
IDs.

The STRIDE Runtime allocates resources for each STID created within the system, as
well as configures the maximum size of a STID name (via #define
srCFG_STID_NAME_SIZE in srcfg.h) for the target.

Generally, each thread will have its own STID.

1.1.4. STRIDE Trace Point ID (STPID)

The STRIDE Trace Point ID (STPID) consists of a unique 32-bit ID and an optional
payload, and is used for trace points. The STPID value of zero (0) is reserved for the
system. There are no constraints on different application threads using the same trace
point. The trace point payload is used to define the format of the data associated with it.
The only additional constraint unique to trace point payloads versus message payloads is
that there is no support for embedded pointers. The memory block pointed to is not
transferred over to the host Runtime environment. Trace points also use payloads to
represent debug information that is being provided to the host Runtime environment.

STRIDE Runtime Developer’s Guide

18 Copyright © 2001 – 2010 S2 Technologies, Inc.

1.1.5. STRIDE Response ID (SRID)

The STRIDE Response ID (SRID) is defined as a unique 16-bit value required when
using a two-way message. It is not required for any other type of message. It identifies
the message User and enables routing of the response payload. The User then provides
this unique ID to the Runtime, which in turns provides it to the message Owner. The
Owner is required to supply this same SRID when sending a response back to the
Runtime, in order to enable proper routing of the response payload. The format of the
SRID is shown below; the first 8 bits are reserved for routing information that is vendor-
specified.

STIDRouting Info

07815

1.1.6. Notification of Traffic ID (NID)

The Notification of Traffic ID (NID) is defined as a unique 32-bit value used to represent
traffic pending from the STRIDE Runtime. Each STID created within the system is
required to store an associated NID used by the Runtime when notifying the native
platform. The Runtime passes back the stored NID when signaling the platform of
pending traffic for a specific STID.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 19

1.2. Memory Requirements

STRIDE Runtime requires four types of memory to support its messaging and tracing
services:

Program For most applications, the program size of STRIDE Runtime
ranges from 20 to 45 Kbytes depending on the compiler and
underlying target processor.

Internal The STRIDE Runtime requires static memory for internal use.
This memory is not configurable and typically ranges from 1
Kbytes to 10 Kbytes depending on the compiler and
underlying target processor. The STRIDE Runtime Thread
also requires meory for stack usage. This memory used by the
STRIDE Runtime is requested through the
palMemSegmentOpen() and palMemSegmentClose() routines.

Note: This does not include space required for interrupt
services routines that use the same stack as the interrupted
thread.

In case of multi-process target is enabled, this memory should
be shared among applications.

Dynamic All memory requirements for payload storage are requested
through the palMemAlloc(..) and palMemFree(..) routines.
There are no limits imposed by the STRIDE Runtime on how
much memory is available at one time to support transferring
message payloads through the system.

If the STRIDE Runtime Memory Management is enabled,
dynamic memory will be allocated from the configurable
memory.

Configurable The configurable memory used by the STRIDE Runtime is
requested through the palMemSegmentOpen() and
palMemSegmentClose() routines. The blocks of memory that
are configurable are defined in the srcfg.h file. The constants
contained in the file should be customized for each project
based on its specific requirements.

Note: In case of multi-process target is enabled, this memory
should be shared among applications.

Most of the memory usage required by the STRIDE Runtime is configurable. The
configurable memory is divided into two functional groups: (1) Messaging, and (2)
Tracing.

STRIDE Runtime Developer’s Guide

20 Copyright © 2001 – 2010 S2 Technologies, Inc.

1.2.1. Messaging Memory

The STRIDE Runtime requires configurable messaging memory to be configured at
compile time. Each project can use the constants contained in the srcfg.h file to customize
their own memory requirements. Figure 3 contains the constants and their default values
related to messaging.

#define srCFG_TOTAL_STIDS 16
#define srCFG_TOTAL_SUBCS 20
#define srCFG_TOTAL_PTRS 30

#define srCFG_SUID_TABLE_TYPE 1
#define srCFG_SUID_TABLE_SIZE 225

#define srCFG_TOTAL_SUIDS_QUED 50

#define srCFG_STID_NAME_SIZE 15

#define srCFG_SUID_HASH_FUNC(x)
(srWORD)((x)%(srCFG_SUID_TABLE_SIZE))

Figure 3: Configurable Defines for Messaging

The number of STRIDE Transact IDs (STIDs) supported by STRIDE Runtime is defined
by the constant srCFG_TOTAL_STIDS. The STRIDE Runtime will pre-allocate an
internal STID Control Block (SCB) for each of the potential STIDs that can be created. A
single STID Control Block requires 278 bytes. The SCB contains the Notification
Identifier (NID), tracing control flags, pre-allocated mailboxes, and the name of the
STID. Thus, the total memory required for STIDs is equal to 278 *
srCFG_TOTAL_STIDS. The maximum number of STIDs that can be supported by
the STRIDE Runtime is 255.

You can configure the STRIDE Runtime to use either an index-based or search-based
SUID table by setting the constant srCFG_SUID_TABLE_TYPE. By default, the Runtime
uses a search-based SUID table. A value of zero (0) will configure the Runtime to use the
index-based SUID table. A value of one (1), the default value, will cause the Runtime to
use a search-based SUID table.

The index-based SUID table is the most efficient for the Runtime to access, given the
highest of the range of SUIDs is a lesser number. The search-based table is most efficient
for memory usage. The number of SUID entries for either SUID table type is defined by
srCFG_SUID_TABLE_SIZE. This constant is used to statically allocate an internal
Message Control Block (MCB) for each SUID entry. The STRIDE Runtime can support
up to 65534 unique SUIDs. However, the value of a SUID can be up to 24 bits
(16777215). Note that it is highly recommended to use a search-based SUID table if high
values are used for SUIDs. A single Message Control Block requires 4 bytes for an index-
based SUID table and 10 bytes for a search-based SUID table.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 21

If you use an index-based SUID table, the SUIDs numbering starts at zero and ends at the
table size minus one (1). The SUID is the actual index into the SUID table. This makes
for a very efficient way to access SUID information. If you use a search-based SUID
table, the SUID table uses the first available SUID entry to store the SUID information.
When accessing SUID information, the Runtime searches the SUID entries to find the
correct SUID. The Runtime uses a Hashing algorithm to make the searching more
efficient. The Hashing function can be altered by setting the
srCFG_SUID_HASH_FUNC macro.

When a message is sent to a specific STID, it is placed in a Message Queue Entry (MQE)
that corresponds to the receiving STID. A queue entry contains a SMID, a pointer to an
optional payload, the size of the payload and the index to the next entry, if it exists. The
STRIDE Runtime pre-allocates a number of these queue entries at compile time. The
total number of messages that can be queued at one time is configurable and defined by
the srCFG_TOTAL_SUIDS_QUED constant. This number represents the total number of
messages that can be pending at any one time. STRIDE Runtime can support up to 3000
Message Queue Entries. A single Message Queue Entry requires 16 bytes.

The STRIDE Runtime also uses Message Queue Entries from this pre-
allocated pool for its own internal messaging.

For broadcast message types any number of users, up to 200, can subscribe to the
response payload. The STRIDE Runtime places the subscriber information into a
Message Subscribe Entry (MSE). A Message Subscribe Entry contains the routing
information for the subscriber and an optional pointer to another entry. The total number
of subscribers available for the system at any one time is configurable and defined by the
srCFG_TOTAL_SUBCS constant. The STRIDE Runtime can support up to 200
subscribers. A single Message Subscriber Entry requires 8 bytes.

For messages that contain pointers within a payload, the srEPtrSetup(..) routine must be
called by the sender. This provides the Runtime with the bookkeeping information
required for marshaling. There is no limit to the number of pointers a single payload can
contain. For every pointer the STRIDE Runtime pre-allocates a Pointer Entry (EPE). The
Pointer Entry contains the pointer address, size, offset, type and directional attribute of
the pointer. The total number of pointers available for the system at any time is
configurable and defined by the srCFG_TOTAL_PTRS constant. The STRIDE Runtime
can support up to 4000 pointers. A single Pointer Entry requires 14 bytes.

STRIDE Runtime Developer’s Guide

22 Copyright © 2001 – 2010 S2 Technologies, Inc.

Table 2 below is an example of the memory required based on the values found in Figure
3 .

Table 1: Messaging Memory Allocation Example

Item Maximum Example Entry Size Memory
STIDs 255 16 278 4448
SUIDs 65534 225 4 900
Queued Entries 3000 50 16 800
Subscribers 200 20 8 160
Pointers 4000 30 14 420
Totals 6728

Entry sizes are calculated using bytes. It is assumed that no structure padding
is taking place.

1.2.2. Tracing Memory

The amount of memory and processing time used for tracing can be controlled by
adjusting the parameters of the tracing constants. Figure contains the constants and their
default values related to tracing.

#define srCFG_TOTAL_TRACING_MEMORY 4096
#define srCFG_TRACEBUFFER_MAX_SIZE 1000
#define srCFG_TRACEBUFFER_WAKEUP_TIME 100

Figure 4: Configurable Defines for Tracing

The amount of memory allocated for tracing is determined by the
srCFG_TOTAL_TRACING_MEMORY define. This is the amount of memory allocated
for the buffer that holds the trace entries before they are broadcast. Maximum tracing
memory STRIDE Runtime can support is 65000.

The srCFG_TRACEBUFFER_MAX_SIZE define establishes the maximum size of each
trace broadcast. Maximum trace buffer size STRIDE Runtime can support is 64000.

The srCFG_TRACEBUFFER_WAKEUP_TIME define determines the fastest rate at
which the STRIDE Runtime will broadcast trace buffers.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 23

1.2.3. Transport Settings

The maximum size of an I-block sent over the remote link can be defined by setting the
srCFG_MAX_TRANSPORT_UNIT define. This value is used to determine when the
Runtime will fragment an I-block. I-blocks larger than the max transport unit are broken
up into smaller I-blocks, each not larger than the define value. A value of zero will
disable any fragmentation. Your dynamic memory allocation system must be able to
allocate a memory block at least as big as the size of this define (if it’s not zero). If no
fragmentation is used then you must be able to allocate a memory block as large as the
largest I-block. The I-block size is determined by the size of your messages being sent
over the link and your settings for the STRIDE tracing system.

#define srCFG_MAX_TRANSPORT_UNIT 2048

Figure 5: Configurable Defines for Transport

The initial state of the target transport is set through the
srCFG_DEFAULT_TRANSPORT_STATE define. A value of one (1) indicates that the
transport is initially ready transmit data, and if the target Runtime needs to, an I-block to
the host it will do so. If a value of zero (0) is used, the Runtime will not send out an I-
block until the state is changed by using the routine registered with the PAL through the
palOutRdyReg() routine (for more information, refer to the STRIDE Platform
Abstraction Layer (PAL) Specification).

#define srCFG_DEFAULT_TRANSPORT_STATE 1

Figure 6: Configurable Defines for Transport

1.2.4. Memory Management

The STRIDE Runtime can manage dynamic and configurable memory required. This is
optional for single-process target but is a required for multi-process target. Each project
can use the constants contained in the srcfg.h file to customize memory requirements. If
memory management is set to enable, the block sizes and the maximum limits of memory
segments for dynamic and configurable memory should be configured.

In case of multi-process target is enabled, all dynamic, configurable and internal static
memory should be shared among applications and will be allocated and managed by the
STRIDE Runtime’s memory management module srMem.

STRIDE Runtime Developer’s Guide

24 Copyright © 2001 – 2010 S2 Technologies, Inc.

Figure 7 contains the constants and their default values related to memory management.

#define srCFG_MEMORY_MANAGEMENT 0

#if srCFG_MEMORY_MANAGEMENT
#define srCFG_MEMORY_BLOCK_SIZE_SMALL 30
#define srCFG_MEMORY_BLOCK_SIZE_MEDIUM 100
#define srCFG_MEMORY_BLOCK_SIZE_LARGE 500
#define srCFG_MEMORY_BLOCK_SIZE_LARGE2 1000
#define srCFG_MEMORY_BLOCK_SIZE_LARGE3 10000
#define srCFG_MEMORY_BLOCK_SIZE_HUGE 0xFFFF

#define srCFG_MEMORY_BLOCK_MAX_SMALL 5000
#define srCFG_MEMORY_BLOCK_MAX_MEDIUM 250
#define srCFG_MEMORY_BLOCK_MAX_LARGE 250
#define srCFG_MEMORY_BLOCK_MAX_LARGE2 100
#define srCFG_MEMORY_BLOCK_MAX_LARGE3 50
#define srCFG_MEMORY_BLOCK_MAX_HUGE 50

Figure 7: Configurable Defines for Memory Management

The enabling and disabling of memory management in the STRIDE Runtime is defined
by the constant srCFG_MEMORY_MANAGEMENT. The STRIDE Runtime’s memory
management module srMem determines the sizes and maximum number of memory
blocks based on the parameters in srcfg.h. The size of dynamic memory allocated from
shared memory is dependent on the dynamic memory requirements such as the size of the
STRIDE messages defined in your system, the number of messages outstanding, and the
memory size defined for your trace logs. The size of internal static memory, used by the
STRIDE Runtime for bookkeeping purposes, depends on each of the STRIDE Runtime
module data.

1.2.5. Multi-Process Target

The STRIDE Runtime can support multiple-process Target that runs several applications.
The enabling and disabling of multi-process target in the STRIDE Runtime is defined by
the constant srCFG_MULTI_PROC_TARGET.

In case of multi-process target is enabled, all dynamic, configurable and internal static
memory will be shared among applications and allocated and managed by the STRIDE
Runtime’s memory management module srMem.

#define srCFG_MULTI_PROC_TARGET 0

Figure 8: Configurable Defines for Multi-Process Target

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 25

1.3. Using the API

After configuring the parameters related to memory usage, and completing the PAL layer
(see the STRIDE Platform Abstraction Layer Specification), the STRIDE Runtime can be
dowloaded to the target or included in the target build. The STRIDE Runtime must first
be initialized by calling srInit(). Following initialization, the STRIDE Runtime Thread,
with the entry point srThread(), must be started in the RTOS. At this point the STRIDE
Runtime is available for general use.

1.3.1. Creating an STID

A STRIDE Transact ID (STID) is required before the services from the STRIDE Runtime
are used. The STID is the logical identifier representing resources allocated by the
STRIDE Runtime. This unique identifier is required as an input parameter to nearly all of
the STRIDE Runtime APIs. The srCreateSTID(..) routine is used to create the STID and
enables you to provide the required input parameter Notification Identifier (NID). The
STRIDE Runtime stores the NID associated with the STID and only uses it when the
PalNotify(..) routine is called.

For best performance using the STRIDE Runtime, keep a copy of the STID for use when
invoking services. The STRIDE Runtime uses the STID to directly access (without
searching) the associated resources. Using the srQueryNID(..) routine to look up the
STID before each STRIDE Runtime call can adversely affect system performance.

Note: An STID alphanumeric name can be from 0 to a configurable length
(srCFG_STID_NAME_SIZE). A empty string (zero-length) may assigned if it is desired that
transaction originating or terminating on this STID are not to be traced on.

1.3.2. Creating a STRIDE Message

A STRIDE Message can be defined by adding STRIDE message attributes to your
message IDs. These attributes define the type of message you are using. STRIDE
message types are defined as one-way, one-way command, one-way response, two way
and broadcast messages.

You also need to define whether the payload is sent by value or pointer. Payloads sent by
pointer require that you also define which type of memory is being used, private or pool.

STRIDE Runtime Developer’s Guide

26 Copyright © 2001 – 2010 S2 Technologies, Inc.

1.3.2.1. The One-way Message

The STRIDE one-way message is used as a generic message with no inherent sense of
command or response. It is simply a message sent in one direction. The one-way
command is the same as a one-way but is expected to be sent as a command. The one-
way response is not directly connected to the one-way command but can be sent as a
response to a received one-way command. A one-way and a one-way command must be
registered in order for the message to be received. The one-way response does not need to
be registered but will be sent to the recipient specified in the message instance provided
when the one-way command was read.

The one-way command and one-way response do not share the same SUID, or
STRIDE Unique Identifier.

1.3.2.2. The STRIDE Two-way Message

The STRIDE two-way message is similar to the one-way command and one-way
response. However, with the two-way message the command and response portions share
the same SUID with different payloads defined. The SUID is registered by the “owner”,
and as with the one-way response, the response is not registered but is instead sent back
to the recipient in the message instance.

A service owner provides a given service to others (i.e., it calculates a
checksum, polls a semaphore, or performs some other activity that can be
classified as a service). The owner of the messaging interface receives a
command from the users to obtain the service.

1.3.2.3. The STRIDE Broadcast Message

The STRIDE broadcast message is similar to the one-way response message and the
response portion of the two-way message. However, with the broadcast message the
recipient is determined through the use of the subscriber concept. Delivery is determined
by subscription. A broadcast message is used to send a response to a set of Users based
on the Runtime’s subscriber list. To send a broadcast message, the srBroadcast(..) routine
is used. A broadcast message’s Send Type (ST) attribute must be set up as a response.

javascript:hhctrl.TextPopup('A%20command%20is%20a%20messaging%20interface%20transaction%20that%20always%20originates%20with%20a%20user.%20','Verdana,8',10,10,00000000,0xc0ffff)�

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 27

/* Message Types (MT) */
#define srMT_ONE_CMD 0x00000000
#define srMT_ONE_RSP 0x01000000
#define srMT_TWO 0x02000000
#define srMT_BRD 0x03000000

/* Abbreviations MT */
#define srMT_ONE srMT_ONE_CMD
#define srMT_ONEc srMT_ONE_CMD
#define srMT_ONEr srMT_ONE_RSP

/* Send Type for Command (ST_CMD) */
#define srST_CMD_PTR 0x00000000
#define srST_CMD_VAL 0x04000000

/* Send Type for Response (ST_RSP) */
#define srST_RSP_PTR 0x00000000
#define srST_RSP_VAL 0x08000000

/* Pointer Usage for Command (PU_CMD) */
#define srPU_CMD_POL 0x00000000
#define srPU_CMD_PRI 0x10000000

/* Pointer Usage for Response (PU_RSP) */
#define srPU_RSP_POL 0x00000000
#define srPU_RSP_PRI 0x20000000

/* Access Class (AC) */
#define srAC_MSG 0x00000000
#define srAC_FUNCTION 0x40000000
#define srAC_SYS 0x80000000

Figure 9: STRIDE Message Types

1.3.3. Registering Messages

Owners of one-way command messages, two-way messages and functions are required to
register ownership with the STRIDE Runtime. The srRegister(..) routine is used to
establish this ownership. The STID and associated SMID (for messages) or SUID (for
functions) are required for this operation. A STID owns the message and only one Owner
of one-way and two-way messages can exist at one time. The STRIDE Runtime uses the
registration information to properly route these message types between Owners and
Users. If the message is not locally registered the STRIDE Runtime can potentially route
the message to another platform.

 Broadcast message types cannot be registered.

STRIDE Runtime Developer’s Guide

28 Copyright © 2001 – 2010 S2 Technologies, Inc.

1.3.4. Overriding Registration

Any message that is registered with the STRIDE Runtime can be overridden by the host
Runtime environment. This overrides and takes the ownership of any currently registered
one-way command message, two-way message or function. Any future calls will be
routed to the local override owner based on override registration.

1.3.5. Subscribing to Messages

Any STID can subscribe to a broadcast message type. The srSubscribe(..) routine is used
to place a STID into the runtime’s subscription list for a specific message. There are no
limits on the number of subscribers for a broadcast message type.

When a payload is broadcast that uses pool memory, either for the payload (e.g.,
srPU_RSP_POL) or pointers, the STRIDE Runtime will create a copy of each memory
block allocated from the pool for the second and subsequent subscribers. This enforces
the rule that the sender always allocates and the reader always frees. If there are no
subscribers, the STRIDE Runtime handles the release of any pool memory associated
with the payload.

When a payload that uses private memory is broadcast, a copy is made for each
subscriber then the memory is returned by calling the srReadComplete routine.

 It is not possible to subscribe to one-way and two-way messages.

1.3.6. Reading and Sending Messages

The STRIDE Runtime supports one API for reading messages and three APIs for sending
messages. These routines are:

• srRead(..)

• srSendCmd(..)

• srSendRsp(..)

• srBroadcast(..)

The srRead(..) routine allows the reading of commands and responses. Both a command
and a response can have a payload associated with it. Payloads are sent “By Value” or
“By Pointer”, which is determined by the attributes associated with the message.

When reading a message, the caller must allocate enough memory to hold the biggest
“By Value” payload that it might receive. “By Pointer” payloads store only the address of
the payload, which is typically 4 bytes.

When sending commands or responses, there are three different routines to choose from
depending on the context.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 29

A User can send a one-way or two-way command using the srSendCmd(..) routine.

An Owner can send a two-way response using the srSendRsp(..) routine. (One-way
messages do not have responses.)

A broadcast message is used to send a response to a set of Users based on the Runtime’s
subscriber list. To send a broadcast message, the srBroadcast(..) routine is used. A
broadcast message’s Send Type (ST) attribute must be set up as a response.

1.3.6.1. Send Type by Value

When the Send Type attribute is set by Value (Send Type by Value), the entire payload is
copied by the Runtime from the payload sender's memory space to the receiver's memory
space. The example below shows a sender transferring a payload of 10 bytes using 16-bit
addresses. The sender makes a call to the Runtime, passing the address and size of the
payload. The Runtime makes a local copy of the data, using common pool memory, and
returns to the caller. The sender can now reuse the memory that was holding the original
payload. When the reader calls the Runtime, an image of the payload is copied into its
own address space and any temporary storage used to hold the payload by the Runtime is
released.

STRIDE Runtime Developer’s Guide

30 Copyright © 2001 – 2010 S2 Technologies, Inc.

1.3.6.2. Send Type by Pointer

When the Send Type attribute is set by Pointer (Send Type by Pointer), only the address
of the payload is copied from the sender's memory space to the reader's memory space.
The example below shows a sender transferring a payload of 10 bytes via a pointer using
16-bit addresses and Little Endian byte ordering. The sender makes a call to the Runtime,
passing the size and address of the payload. The Runtime makes a local copy of the
address and size and returns to the caller. The sender cannot reuse the memory holding
the payload at this time. The address of the payload is copied into the reader's address
space when the reader calls the Runtime. This address points to the original payload data
created by the sender. The reader also receives the size of the payload when issuing the
read call. If the payload's Pointer Usage attribute is set to pool, it is the responsibility of
the reader of the payload to free the associated memory. A pool memory setting implies
that the pointer memory has originated from a common area to which all application
threads have access. If the Pointer Usage attribute is set to private, the reader does not
free the associated memory; it is freed by the STRIDE Runtime.

1.3.7. Using Pointers

When a payload contains a pointer, there are special requirements that must be followed.
The STRIDE Runtime supports pointers as defined in the STRIDE Communication Model
(refer to Chapter 3). The STRIDE Runtime requires each pointer defined in a payload to
be both set up and attached to before it can be successfully marshaled across platform
boundaries. The setup process is used to inform the Runtime of a pointer’s existence and
provide information required for marshaling. The srEPtrSetup(..) routine is required to be
called once for each pointer. The routine returns a pointer handle, which is a required
input parameter to the attach routine. The setup routine is passed information concerning
the STID, the SMID, the offset of the pointer, the message direction (command or
response), the pointer direction (input or output) and whether freeing is required by the
reader. If a nested pointer is used, the srNestedEPtrSetup routine needs to be called. The
srEPtrAttach(..) routine is used to inform the Runtime of the actual pointer address and
the corresponding size. The attachment routine must be called for each pointer, initially.
Subsequent calls are only required if the size or address changes.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 31

Listing 1: Example Using Setup and Attach Routines

srEPtrSetup(.., &MyEPtrHandle); // Only required once
MyPayloadCmd.field1 = 10;

MyPayloadCmd.Ptr = Allocate(sizeof(MyType));
srEPtrAttach(MyEPtrHandle, MyPayloadCmd.Ptr, sizeof(MyType));
srSendCmd(..);

Each payload that contains a pointer requires a unique setup and attachment by each
sender. The STRIDE Runtime maintains the bookkeeping information for each User and
Owner attaching to a pointer. The only constraint regarding the number of unique
pointers defined within a single payload is determined by the overall configuration. The
total number of pointers supported by the STRIDE Runtime is configurable and defined
by srCFG_TOTAL_PTRS. This total includes all of the unique pointers defined within
the payloads multiplied by the total number of senders.

1.3.8. Returning Message Memory

The STRIDE Runtime supports the concept of a Reader of a message not freeing pointer
memory associated with the payload. This type of memory is defined as private. Pointer
memory in this context refers to both the payload (sent “By Pointer”) and a pointer.
When a reader of a message frees any pointer memory, the STRIDE Runtime is required
to initially allocate memory from the same pool of memory available to all applications.
This type of memory is defined as pool. Pool memory is used (either directly or
indirectly) by the palMemAlloc(..) and palMemFree(..) routines. To support passing
private memory, the STRIDE Runtime requires each application that reads a payload
using private memory to “return” the message memory back to the Runtime environment.
This enables the STRIDE Runtime to release any resources required to support the
marshaling of the private memory across platform boundaries. Resources are only
allocated when using private memory and sending a message across platforms.

The srReadComplete(..) routine requires the Message Instance ID as an input parameter.
The Message Instance ID represents the unique instances of the message corresponding
to the sending STID.

STRIDE Runtime Developer’s Guide

32 Copyright © 2001 – 2010 S2 Technologies, Inc.

Listing 2: Example Using the Read Complete Routine

for (;;) {
 // Wait for new message
 CustomerWait(…);
 // Reading a message Payload
 srRead(..);
 ..
 // Respond to any 2-ways using EPptr with OUT/INOUT before returning
 ..
 srReadComplete(wMySTID, dwMsgInstFromRead);
}

1.3.9. Pointer Memory Policies

Sending payloads by pointer and using pointers provides an efficient method for passing
data between threads — no data is copied. Pointers can also be used to construct more
advanced data types. It is important to note that using these methods creates more
responsibility for the application threads using them. There are a number of constraints
that must be adhered to in order to support "transparent interfacing" when using pointers
and to enable successful marshaling of data between platforms. The memory
management requirements described below apply to application threads that send
payloads by pointer and/or use pointers:

• There can only be one User of a pointer at any given time. Because interfaces can
cross platform boundaries, only one application thread can have access to the
pointer at a time (ownership of memory passes between the User and the Owner
when exchanging data). It is recommended that a two-way message type always
be used when sending a payload by pointer whose Pointer Usage attribute is set to
private. This ensures that only one User uses a pointer at a time.

• When transferring a pointer that will require freeing, the sender always allocates
the memory from a common pool and the reader always frees it. This applies to
both a User sending a command payload and an Owner sending a response
payload.

• The reader returns to the Runtime any pointer memory used for a payload that
does not require freeing. This is required in order to support the marshaling of
payloads across platform boundaries whose pointers are not being freed by the
reader (Pointer Usage attribute set to private). The SCM requires that the Runtime
dynamically allocate temporary memory from the common pool to hold pointer
memory when crossing platform boundaries. If the reader is not required to free
the memory, then it is the responsibility of the Runtime to free the temporary
memory once it has been returned. Once a pointer has been returned by the reader
to the Runtime, the memory cannot be dereferenced.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 33

• Only a command's payload in two-way messages and ParameterLists can contain
pointers with the OUT or INOUT directional attribute. Owners of these types of
messages are required to respond to the message User. When crossing platform
boundaries, temporary resources are allocated by the Runtime and are not released
until a response to the message is received.

• Embedded pointers with OUT or INOUT directional attributes can only be used
with two-way message types. This enables the Runtime to update the sender's
original pointer memory.

1.3.10. Trace Points

Trace points are used to instrument the source code at a more detailed level than the
standard message tracing. The STRIDE Runtime itself uses trace points to indicate errors
and provide detailed error information. The STRIDE Trace Point ID (STPID) uses the
most significant bit as a reserved bit to differentiate a system trace point from a user-
defined trace point. When a connection exists, the Runtime will insert all system trace
points into the trace buffer. If no connection exists, and no target filters are set, then no
trace points will be placed in the trace buffer. This is done to minimize the system
impact.

1.3.11. Data Format Conformance

Platform-dependent characteristics include items such as the Endian ordering,
enumeration sizes, pointer sizes, integer size, and structure alignment boundaries. The
SCM requires that the target platform's native data type formats must be conformed to by
the host platform when exchanging messages. The host Runtime marshals payload data
when communicating with the target platform. The burden is always on the host platform
to map the differences between it and the target's payload data type formats, which
reduces processing and memory requirements for the target platform. Messages are
always exchanged according to the target memory format.

1.4. Routing with Access Class Registration

Access Class Registration is used to route non-registered messages and functions
between the host and target platforms. There are two types of Access Classes:

• Access Class Messages – for Remote Messaging (RM) that includes Remote
Message Stub (RMS) and Remote Message Proxy (RMP).

• Access Class Functions – for non-registered functions in Intercept Module (IM).

The routing of messages is described as Remote Messaging (RM) while that of functions
is described as Access Class Intercept Module.

STRIDE Runtime Developer’s Guide

34 Copyright © 2001 – 2010 S2 Technologies, Inc.

1.4.1. Remote Messaging (RM) Overview

A Remote Messaging (RM) service provides the glue between the native messaging
system and STRIDE. It generally runs as a separate task on the Target to act as a
forwarding agent between the Target and STRIDE by translating the message between
STRIDE and Target message formats, often by wrapping the Target message datagram
inside an equivalent STRIDE message.

Remote Messaging has two concepts, namely, Remote Message Stub (RMS) and Remote
Message Proxy (RMP). The RMS can be used to receive STRIDE messages from the
Host and translate them to native messages. The RMP can be used to receive native
commands from native threads and translate them into STRIDE messages, which can be
routed to the Host.

See section 2. Remote Messaging (RM) for more details.

1.4.2. Access Class Intercept Module

In some resource constrained environments, you might not want to register all your
functions owned on the device with the STRIDE Runtime. By registering the Intercept
Module (IM) as an Access Class (AC), all the non-registered functions could be routed to
the STID associated with the IM.

This is useful when the search-based SUID table is used and the total number of
functions is large because the SUIDs do not have to be registered regardless of they are in
use or not. Remember that registering SUIDs (functions) will cause the Runtime to
allocate an entry in the SUID table for each function registering.

1.4.2.1. Access Class IM Setup

The Intercept Module (IM) can register itself as an Access Class by calling once at
startup the STRIDE Runtime API srRegisterAccessClass with the Access Class type
srAC_REG_FUNCTIONS along with the STID and the mail box to which you want the
unregistered functions routed.

To generate an Access Class IM, you can simply enable the Access Class registration
check box in the IM Wizard GUI or use the STRIDE Studio automation functionality.

1.4.2.2. How It Works

If you call a non-registered function and the IM is registered as an Access Class, the
function call will be routed to the IM. IM can be registered as an Access Class either on
the host or the target. Routing of a function call is handled by the STRIDE Runtime
according to the following sequence of order.

1. Routes to the local override owner based on override registration
2. If not, routes to the local owner base on SUID registration
3. If not, routes to the local IM based on Access Class registration

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 35

4. If not, routes to the remote platform
5. The remote platform would go through the steps 1 through 3 again

1.5. Connecting to the Host

Host Transport should initiate to a connection between the host and target platforms.
Once there is a connection, inter-platform messaging and tracing will be available.

The connection method involves using a mail service found in the srmsg.h file through
which the srCONNECT_OPEN_T_SMID message can be used to establish a connection.

When instructed to establish a connection, the STRIDE Runtime executes the connection
protocol as defined by SCIP. The routing policy comes into place if a message is not
registered locally and there are messages registered on the remote platform. The message
is then automatically routed across the link to the other platform. This allows for Owners
and Users to be located on either platform without changing any code. If a connection
fails to open, the STRIDE Runtime will continuously listen for a connection request from
the host.

To get updates on the current state of the connection a user can subscribe to the
srCONNECT_STATUS_B_SMID. If the target needs to disconnect from the host the
srCONNECT_CLOSE_T_SMID system message is used.

1.5.1. Connection Settings

Maximum allowed duration for a connect request to establish a connection with the Host
can be configued using the define srCFG_CONNECTION_TIMEOUT in the srcfg.h.

#define srCFG_CONNECTION_TIMEOUT 5000

Figure 10: Configurable Defines for Connection

STRIDE Runtime Developer’s Guide

36 Copyright © 2001 – 2010 S2 Technologies, Inc.

2. Remote Messaging (RM)
In some cases a native messaging system may not allow messages to be sent between
your target platform and your Desktop. Using Remote Messaging, transparent messaging
can be achieved between the STRIDE Host environment and the native target platform. A
remote message is defined as any message not registered with the STRIDE Runtime. By
using remote messages you can support your native messaging without having to use
STRIDE SUIDs or subscribe resources.

Remote Messaging requires that the STRIDE Runtime be enabled on your target in order
to allow communication between the STRIDE desktop environment and the native
messaging environment on the target. The STRIDE Runtime provides several features
which allow the STRIDE messaging model to interact with the native messaging system.

Remote Messaging has two concepts, namely, Remote Message Stub (RMS) and Remote
Message Proxy (RMP). The RMS can be used to receive STRIDE messages from the
Host and translate them to native messages. The RMP can be used to receive native
commands from native threads and translate them into STRIDE messages, which can be
routed to the Host.

Implementing the RMS and RMP requires a thorough understanding of the STRIDE
system.

Target

STRIDE
Host

Host

RMS

RMP

Native
Thread

1

Native
Thread

2

STRIDE Command

STRIDE Response

Native Command

STRIDE Command
Native Command

STRIDE Response
Native Response

Native Response

Figure 9: Remote Message Overview

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 37

2.1. Implementing a Remote Messaging Service

2.1.1. How It Works

If you send a non-registered message from the host to the target and the target does not
have the message registered, the message will be routed to the Remote Message Stub
(RMS) on the target. The RMS will identify itself by calling once at startup the STRIDE
Runtime API srRegisterAccessClass with the Access Class type srAC_REG_MESSAGES
along with the STID and the mail box to which you want the unregistered messages
delivered. Once the RMS receives the remote message, it is free to translate the message
into its native message format and deliver it to the native threads.

The remote messages received from the STRIDE Runtime will be accompanied by a
“message instance” value, which can be used to route a response back to the sender
without knowing the identity of the sender. If you need to match a response to a
command received, you can save the message instance received and return it to the
Runtime when you send the response. The message instance must be used to route one-
way responses and two-way responses.

Responses are always routed to the sender regardless of the SUID value, as long
as the proper message instance is sent with the response.

If coordinating responses with the message instance is difficult, you will have to use one-
way messages for your responses. If these one-way messages are registered on the host,
your responses will be routed correctly without using a message instance.

The RMS can also subscribe to a STRIDE system message that will broadcast remote
subscriber information received by the Runtime. Any subscribe request that comes over
the link will be forwarded to the RMS. Even if the SUID for which the subscribe request
is intended has no SUID entry, the RMS will still receive the subscribe info. This is
useful when subscribing to non-STRIDE messages that the RMS and native target
support. This is also useful when using the target without any subscribe entries. The RMS
can handle all the subscriber lists for its native subscribes.

Broadcasts by the RMS that have no subscribers locally will automatically be forced to
the remote platform. This can be useful when no SUID entries are used on the target but
broadcasts need to be sent remotely.

The Remote Message Proxy (RMP) can be used to receive native commands from the
native threads and translate them into STRIDE messages which can be routed to the Host
platform. Responses sent from the host will be routed back to the RMP and then can be
re-translated into native messages that can be sent back to the native threads.

The RMP will also receive all broadcasts sent from the Host to the Target that are not
subscribed to on the Target. This allows the native platform to use Broadcasts without
having to allocate any subscribe or SUID resources.

STRIDE Runtime Developer’s Guide

38 Copyright © 2001 – 2010 S2 Technologies, Inc.

2.1.2. Issues to Consider

There are many issues to consider when using Remote Messages. Your decisions will
depend on your individual platform’s requirements. Your RMS and RMP threads can
also function exactly like normal STRIDE threads. You can register, broadcast, and send
and receive STRIDE messages. You are free to construct your STRIDE environment to
meet your project’s requirements.

Allocated STRIDE Resources

• Do you need to allocate a SUID table?

• Is your SUID table search- or index-based?

• How many SUID entries do you need?

• What do you need SUID entries for?

SUID Value Organization

• Which messages do you need to register?

• How will you translate between your native messages and your STRIDE SUIDs?

• How will you create a STRIDE SMID from your native message ID? You will
have to add specific STRIDE message attributes to route the message properly.

Broadcasting

• Will you use broadcasting?

• Who will broadcast? The RMS thread? Your native threads?

• If your native threads broadcast, will the RMS thread receive the broadcasts and
forward them to the STRIDE Runtime?

• If your RMS thread receives native broadcasts to be forwarded to the host
platform, how will the RMS thread identify the broadcasts?

Subscriber Lists

• Do you need a subscriber list, or will you force your broadcasts remotely?

• Will you maintain your own subscriber list or let the Runtime maintain it for you?

• If you use an index-based SUID table, is the SUID for your subscription within
the range identified in your SUID table? If you use a search-based SUID table,
you do not have this issue. However, did you allocate enough SUID entries?

Notification

• How does the RMS thread determine who notified it (the STRIDE Runtime or
one of your native threads)? If your RMS thread reads mail from both systems,
you need to be able to tell the difference.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 39

Response Messages

• Do you need to send responses to messages received?

• How will you route responses? Will you use a registered one-way, or a one-way
response with message instance? Or, will you use two-way messages?

• How will you differentiate between commands and responses?

Pointer Usage

• How many SUIDs will you need to support your messages with pointers?

• If you use an index-based SUID table, are your pointer SUIDs within the
identified range? This ensures they have a valid SUID entry.

Tracing

• You must create an STID for tracing.

2.1.3. Translating between STRIDE and Native Message IDs

There are many ways to translate between STRIDE messages and your native messages.
You can use static lookup tables (or switch statements) that map one message directly to
another. Or you can have some type of algorithm for doing a generic transformation.
Since the STRIDE Runtime routes un-registered messages to the RMS, you can use your
own native message IDs for the STRIDE messages, but leave them unregistered. Then
mask off the STRIDE Message ID (SMID) attributes (the high 8 bits) which leaves you
with your native message ID. When formatting a response, add in the STRIDE attributes
to match the message type you are sending (e.g., one-way response, two-way response,
broadcast). If you can identify the type of native message you are sending back to the
host you can easily add in the proper attributes.

Without the proper attributes on the STRIDE messages you could have invalid
data or undelivered messages.

The benefit to doing a generic transformation algorithm is you would not have to
maintain any kind of table or static data structure. By using ranges of message IDs you
can identify different types of native messages and translate them to the proper STRIDE
message types. For example, if you use message IDs 1 to 100 for one-way commands and
IDs 200 to 300 for broadcasts you would be able to determine that an ID of 205 could be
converted from your native broadcasts into the proper STRIDE messages by adding the
broadcast message type to your ID.

2.2. Using a Remote Message Stub (RMS)

A Remote Message Stub (RMS) thread provides a simple means to integrate the STRIDE
messaging environment with your target’s native messaging. The RMS thread
automatically receives all STRIDE messages that are not registered with the STRIDE
Runtime.

STRIDE Runtime Developer’s Guide

40 Copyright © 2001 – 2010 S2 Technologies, Inc.

You can take advantage of this feature in a number of ways. All your native messages
can be left un-registered with the Runtime to allow the RMS thread to receive all these
messages. You are then free to translate these received STRIDE messages into your
“native” environment. Messages received from your native environment can also be
translated into STRIDE messages to be sent back over to the remote platform using the
STRIDE Runtime. The key is to take advantage of the STRIDE Runtime to accomplish
the message routing that you need to do. You have many different options to choose from
when organizing your system. This chapter can help you to understand the choices you
need to make.

2.2.1. Remote Message Stub Thread Setup

The RMS creates a STRIDE Transact ID (STID). It then uses this STID along with one
of its mail boxes and the RMS Access Class type srAC_REG_MESSAGES to identify
itself as the RMS by calling srRegisterAccessClass. Then, all unregistered messages are
routed to the RMS. The RMS can also subscribe to
srSUBSCRIBERS_REMOTE_B_SMID to receive subscriber information received from
the remote platform.

2.2.2. Remote Message Stub Thread Messages

The RMS thread translates the non-registered STRIDE message received into a native
message that it will deliver to its native threads. How that translation is accomplished is
specific to each target platform.

When a STRIDE command is sent to the RMS module, palNotify is called for the NID
associated with the registered RMS STID or registered SUID's STID. The palNotify
implementation and RMS implementation must be tied together. palNotify must cause
the RMS module to run in a context where it can read its STRIDE mail, translate the
SMID into a native ID and then send the native message into the native system. This
usually requires the RMS module be a native task, or at least be driven by a native task,
awakened through the call to palNotify

When a STRIDE command is received several key pieces of information may need to be
maintained. This is the case only IF a native response is expected for the native
command (translated SMID). If there is an expected response, the STRIDE Message
Instance (MINT, which contains the STID and mailbox of the sender) must be kept for
routing the response back into the STRIDE environment. Some native messaging
systems will provide fields to route this information through the native system, others
will not. If the native routing fields are not available, the RMS may be limited. The
limitations are dependent on the native messaging rules and the native system's resource
availability. The same methods, used to bind the command ID and response ID pairs, can
be leveraged, as well, to maintain MINT information. If the MINT information cannot be
maintained between native commands and responses, a possible solution is to allow only
one STRIDE Host tool to access the device at any one time. In this case the MINT would
be the same for every incoming STRIDE command. A single MINT variable could be
saved and used for all command/response transactions.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 41

In some rare cases the RMS may need to maintain STRIDE message auxiliary data (a 4
byte token), which should be treated as part of the MINT information, bound to each
unique command/response transaction. An example scenario, requiring auxiliary data
routing, would be Host development expanded to use native messaging tools on the Host
communicating with the device, through the STRIDE environment.

2.2.3. How to Handle Responses

When the RMS thread reads a STRIDE command message it also receives a message
instance. This message instance holds information that allows a response to be routed to
the sender without knowing anything about the sender. This message instance needs to be
included in the call to srSendRsp in order for a response message to be routed back to the
sender. If the RMS thread is required to send responses to the senders of commands then
the message instance needs to be saved and provided in the srSendRsp call. This requires
the RMS thread to save the message instance and provide it with the correct response.
Sending a response with a message instance is supported with the one-way response and
the two-way response messages.

If the responses are registered on the target as one-way commands then the RMS thread
can send one-way commands as responses.

If the native system sends responses to commands, the RMS module must have a way to
hook into the native message system, in order to receive native responses. This may
require the RMS module to be a native task, or at least be driven by a native task. See the
comments above under "Receiving STRIDE Commands -Sending Native Commands"

Once a response is received from the native system, it must be translated into a
corresponding SMID, as well, the originating command's MINT information must be
used for routing back the STRIDE message. See the comments above under "Binding
Native Commands With Native Responses"

STRIDE Runtime Developer’s Guide

42 Copyright © 2001 – 2010 S2 Technologies, Inc.

2.2.4. Binding Native Commands with Native Responses

If the native messaging system associates native commands with native responses, the
command/response must be bound in the RMS module. The RMS requires this binding
in order to send the correct response message (SMID) into the STRIDE message
environment. This may be a simple requirement or it may require tables, switch
statements, etc. The implementation of the RMS should leverage any native patterns.
For example the native command ID may be the same as the response. In this case the
STRIDE messaging model provides a two way type message, associating a single SMID
with the command and response. In another situation the native system may bind
command ID and response ID pairs. If there is a standard algorithm for ID pairs, it can
be leveraged for binding SMID command/response pairs, or two way type SMIDs.
Native routing information may be leveraged as well. When sending a native command,
any routing field(s) routed through the native system may be used to associate the
response with the originating command. A worst case scenario would require
tables/switches to map a native response ID back to the originating native command ID
(and SMID)

2.2.5. Wait Event

Your wait event routine needs to differentiate between your native threads notification to
the RMS and the STRIDE Runtime notification to the RMS. Since the RMS is the link
between the two messaging systems. You need to decide how this will work. The
STRIDE Runtime will notify the RMS when a remote message is received and your
native threads will notify the RMS when they need to send a remote message. If your
operating system (OS) uses some type of event notification you can define different
events for your native threads and the STRIDE Runtime to use.

2.2.6. Subscriptions and Broadcasts

The RMS thread can use the STRIDE Runtime’s resources for managing remote
subscriptions or it can manage subscriptions itself.

2.2.6.1. How Subscribers are Stored

There are two different ways that SUIDs are managed by the Runtime: index-based SUID
table and search-based SUID table. With an index-based SUID table, the entries for
SUIDs are preallocated at startup time. The number of entries is fixed and SUIDs are
stored in fixed locations in the SUID table. The indexing is done based on the SUID.
SUIDs that are greater than the size of the SUID table do not have entries. SUID entries
hold the SUID’s subscriber list, filter settings, and pointer information.

When the search-based SUID table is used SUID entries are “allocated” only when
needed.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 43

For example, if a remote subscription is received and there is no SUID entry for the
SUID, then the next available SUID entry is allocated and used for that SUID. If SUID
entries were allocated to accommodate SUIDs with pointers but a remote subscribe is
received, then a SUID entry will be used for that subscribe entry, leaving one less SUID
entry to be used for the pointer SUIDs.

It is important to remember that the first remote subscriber for a particular SUID will
cause the Runtime to allocate a SUID entry to save that SUID’s subscriber info.

2.2.6.2. Broadcasting

When the RMS thread broadcasts, the Runtime will check for a subscriber list in the
SUID entry. If no entry exists or if there are no local subscribers, then the broadcast will
be forced across the link. To save resources you can have no SUID entries allocated on
the target and then all broadcasts will be forced across the link, where the host platform
will keep its subscriber list.

2.2.7. Pointers

STRIDE messages (registered or un-registered) that use pointers must have a SUID entry
available for its use. This means that if you are using an index-based SUID table your
SUID must not be greater than the size of your SUID table. If you are using a search-
based SUID table then you must have an available entry for the SUID with the pointer.

2.2.8. Message Tracing

Automatic tracing of messaging is only available when using STRIDE-registered
messages. However, trace points can be substituted in the sending and receiving
application threads to allow for tracing. A trace point can be created with the message
payload as the trace point payload. Pointers are not handled by trace points, so message
payloads with pointers can either call multiple trace points for the message and for each
pointer, or create a new payload with the pointers copied in. Any application thread using
trace points needs to have an associated STID created.

2.2.9. Remote Message Stub Thread Example

In this example the RMS thread will receive both STRIDE and native messages. There
are two types of STRIDE messages received: remote subscriptions and remote messages.
When remote subscriptions are received the RMS thread calls its own routine to save the
subscribers’ information. When remote message are received the RMS thread converts
the SMID into a native Message ID and calls the native send routine to route the message
to the native threads. When native messages are received any message IDs larger than
0x8000 are broadcast. The RMS thread creates a SMID and does a broadcast. Any other
message is sent back to the host as a one-way response with the latest message instance
received.

STRIDE Runtime Developer’s Guide

44 Copyright © 2001 – 2010 S2 Technologies, Inc.

/**
 * RMSThread.c
 **/

#include "Customer.h"
#include <sr.h>
#include <srutil.h>

#define MAX_MSG_SIZE 10000

void RMSThread(void)
{
 srWORD wRMS_STID;
 srDWORD dwThreadId;
 srDWORD dwMsgInst;
 srWORD wEventId;
 srBYTE MsgBuffer[MAX_MSG_SIZE];
 srWORD wSize;
 srDWORD dwMsgId;

 dwThreadId = CustomerGetThreadId();

 wResult = srCreateSTID(dwThreadId, "RMSThread", &wRMS_STID);

 /* identify this STID as the RMS */
 wResult = srRegisterAccessClass(srAC_REG_MESSAGES,
 wRMS_STID,
 srBOX_1,
 srTRUE);
 /* subscribe for the remote subscriber’s info */
 wResult = srSubscribe(wRMS_STID,
 srSUBSCRIBERS_REMOTE_B_SMID,
 srTRUE);
 /* Message Loop */
 for(;;)
 {
 /* This is the RTOS or Custom Event Wait routine */
 wEventType = CustomerWaitEvent(&wEventId);

 /* For this example, it is assumed that the srRsxMessageNotify()
 function was implemented to use a signal to indicate
 a SCL Message is pending for the remote message stub thread */
 if(wEventId & STRIDE_MSG_SIGNAL)
 {
 /* Read STRIDE Mail */
 wResult = srRead(wRMS_STID,
 srBOX_1,
 sizeof(MsgBuffer),
 &dwSMID,
 &MsgBuffer,
 &wSize,
 &dwMsgInst);

 if(dwSMID == srSUBSCRIBERS_REMOTE_B_SMID)
 {
 /* Add subscriber to native subscriber list */
 CustomerAddSubscirber((uint8*)&MsgBuffer.SubInfo);
 }
 else

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 45

 {
 /* translate into native environment */
 srDWORD dwTargetMsgId = dwSMID & srSMID_SUID_MASK;

 /* now send to native thread */
 CustomerSendMsg(dwTargetMsgId,
 (uint8*)&MsgBuffer.WriteDataCmd,
 wSize);
 break;
 }
 }
 else if(wEventType == CUSTOMER_SIGNAL_EVENT)
 {
 /* read mail from native threads */
 wResult = CustomerRead(&MsgBuffer),
 &dwMsgId,
 &wSize);
 if(dwMsgId & CUSTOMER_BROADCAST_MSG)
 {
 /* broadcasts */
 dwMsgId = dwMsgId & srSMID_SUID_MASK;
 srBroadcast(wRMS_STID ,
 srDWORD(dwMsgId + srMT_BRD + srST_RSP_VAL),
 &MsgBuffer,
 wSize);
 }
 else
 {
 /* send response */
 dwMsgId = dwMsgId & srSMID_SUID_MASK;
 srSendRsp(wRMS_STID,
 dwMsgInst,
 srDWORD(dwMsgId + srMT_ONE_RSP + srST_RSP_VAL),
 &MsgBuffer,
 wSize);
 }
 }
 }
}

2.3. Using a Remote Message Proxy (RMP)

A Remote Message Proxy (RMP) thread provides a way for your target to translate native
commands sent on your target into STRIDE messages on your desktop. It will also allow
you to receive STRIDE broadcasts sent from the host platform without allocating any
subscriber resources on the target. Any broadcast message received over the link that
does not have any subscribers will be delivered to the RMP. The RMP can then translate
the received broadcast message into your native messaging.

An STID can become the RMP by calling the STRIDE Runtime API
srRegisterAccessClass with the RMP Access Class type srAC_REG_MESSAGES. A valid
STID and mail box ID are needed for proper routing.

STRIDE Runtime Developer’s Guide

46 Copyright © 2001 – 2010 S2 Technologies, Inc.

By using the Force Broadcast Remote feature on the host along with the RMP on the
target you can support native broadcasts from the host that will be forced over the link
and intercepted by the RMP on the target. This is done without using any subscriber
resources on either the host or target.

If the Force Broadcast Remote feature is enabled on the host then any broadcast that does
not have a valid SUID associated with it will be routed remotely, regardless of the value
of the SUID. Ensure that the SMID used has the Broadcast attribute set. Once on the
target, the SUID is checked for a SUID entry. If there is no SUID entry then the STRIDE
Runtime will check if there is a valid RMP registered. If so, the broadcast is sent to the
RMP. The RMP is then free to route the broadcast as it sees fit to the native threads.

2.3.1. Remote Message Proxy Routing

The RMP module must have a way to hook into the native message system in order to
receive native commands. This usually requires some sort of native registration for the
specific messages the RMP will route out of the native system. Once the RMP is
registered for the specific native message, the RMP must be hooked into the native
system in order to receive the commands from other native clients. This may require the
RMP module to be a native task, or at least be driven by a native task. Once the native
message is received it must be translated into a SMID and sent into STRIDE messaging
system.

2.3.2. Binding Native Commands with Native Responses

If the native messaging system associates native commands with native responses, the
command/response may need to be bound in the RMP module. The RMP requires this
binding in order to send the correct command message (SMID) into the STRIDE message
environment. This may be a simple requirement or it may require tables, switch
statements, etc. The implementation of the RMP should leverage any native patterns.
For example the native command ID may be the same as the response. In this case the
STRIDE messaging model provides a two-way-type message, associating a single SMID
with the command and response. In another situation the native system may bind
command ID and response ID pairs. If there is a standard algorithm for ID pairs, it can
be leveraged for binding SMID command/response pairs, or two way type SMIDs.

The STRIDE messaging model provides a method to bind the command with the
response through a routing mechanism, auxiliary data (a 4 byte token) routed through the
STRIDE system. When a native command is received by the RMP, it can store any
information, required for routing the native response, in the auxiliary data of the
associated STRIDE command being sent out. When the RMP receives the corresponding
STRIDE response, it can extract the auxiliary data and retrieve any information required
for routing back the native response.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 47

2.3.3. Receiving STRIDE Responses – Sending Native Responses

When a STRIDE response is sent to the RMP module, palNotify is called for the NID
associated with the original STID used to send the originating command. The palNotify
implementation and RMP implementation must be tied together. palNotify must cause
the RMP module to run in a context where it can read its STRIDE mail, translate the
SMID into a native ID and then send the native response into the native system. This
usually requires the RMP module be a native task, or at least be driven by a native task,
awakened through the call to palNotify.

STRIDE Runtime Developer’s Guide

48 Copyright © 2001 – 2010 S2 Technologies, Inc.

3. Runtime API Services
API Services are divided into the following functionalities:

Setup and Shutdown – page 49

Messaging – page 55

Pointers – page 79

Tracing – page 96

Query – page 105

Access Class (Remote Messaging) Routines – page 112

I-block – page 113

Runtime Thread Entry and Exit Point – page 114

Host Override Routines – page 119

Connecting – page 122

Database Loading Routines – page 128

Trace Buffers – page 135

Trace Filtering – page 137

 These services use the sr.h header file.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 49

3.1. Setup and Shutdown

The following routines are utilities used to enable and support the sending and reading of
messages.

• srInit()

• srUninit()

• srCreateSTID()

• srDeleteSTID()

STRIDE Runtime Developer’s Guide

50 Copyright © 2001 – 2010 S2 Technologies, Inc.

srInit()
Initialize STRIDE Runtime

Prototype
srWORD srInit(void);

Description

The srInit() routine initializes STRIDE Runtime internal data structures, mutexes, sets up
the connection parameters, and registers PAL routines.

This routine must be called before any STRIDE Runtime routines are called.

Return Value Description
srOK Success
srERR_INIT_FAILED STRIDE Runtime was unable to initialize

Example

#include <sr.h> // contains prototypes and defines

srWORD wResult;

/***
 * Initializing example:
 ***/

 wResult = srInit();

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 51

srUninit()
Uninitialize STRIDE Runtime

Prototype
srWORD srUninit(void);

Description

The srUninit() routine uninitializes STRIDE Runtime internal data structures, mutexes,
connection parameters, and unregisters PAL routines.

This routine must be called before the STRIDE Runtime is shutdown to
cleanup resources.

Return Value Description
srOK Success
srERR_INIT_FAILED STRIDE Runtime was unable to initialize

Example

#include <sr.h> // contains prototypes and defines

srWORD wResult;

/***
 * Uninitializing example:
 ***/

 wResult = srUninit();

STRIDE Runtime Developer’s Guide

52 Copyright © 2001 – 2010 S2 Technologies, Inc.

srCreateSTID()
Create STRIDE Transact Identifier

Prototype
srWORD srCreateSTID(srDWORD dwNID,
 srCHAR *szName,
 srWORD *pwSTID,
 srBOOL bNew);

Description

The srCreateSTID() routine is used to allocate the resources required to send and receive
messages and to log the use of trace points or trace stings. This routine requires the
Notification Identifier (NID), the STID name, and the bNew parameter.

If the NID is specified, it is used when the STRIDE Runtime notifies the system that
there is a pending message for a STID's box. The NID is simply a value passed to the
Runtime and saved, then passed back to the PAL Notify routine when a notify needs to
take place. The Runtime knows nothing about the NID. The NID is held in order to be
passed back when the Notify routine runs. The Pal Notify routine uses the NID to
correctly notify the specific STID. The details of the NID are specific to the
implementation of the PAL.

If a value of srNID_NONE is passed in as the NID, no NID will be used for this STID
and no notification will take place.

An STID alphanumeric name (szName) can be between 0 and 15 characters. A null
(zero-length) STID name can be used if it is desired that no tracing occur for this
transactor. When a zero-length name is assigned it is not possible to trace on interface
transactions originating from or terminating at the transactor (STID).

The bNew parameter tells the Runtime if a new STID is being requested or if the value in
the pwSTID parameter is the STID requested. This can be used when STIDs need to be
pre-determined regardless of the order the call to srCreateSTID is made. If the requested
STID is already in use, the routine returns an error and the original STID is unchanged. If
a new STID is requested the new value is returned in the pwSTID parameter.

Parameters Type Description
dwNID Input The Application Notification Identifier
szName Input Character pointer to a NULL terminated string
pwSTID Input/Output The STRIDE Transact Identifier
bNew Input Request new STID
 srTRUE = Create new STID dynamically

srFALSE = Use STID passed in parameter list

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 53

Return Value Description
srOK Success
srERR_STID_ALLOC STID allocation failed
srERR_STID_USED STID in use

Example

#include <sr.h> // contains prototypes and defines

srWORD wResult;
srDWORD dwMyNID;
srWORD wMySTID;

dwMyNID = 42; // Get ID for platform specific routine

wResult = srCreateSTID(dwMyNID,“MySTIDName”,&wMySTID, srTRUE);

STRIDE Runtime Developer’s Guide

54 Copyright © 2001 – 2010 S2 Technologies, Inc.

srDeleteSTID()
Release resources allocated to STID

Prototype
srWORD srDeleteSTID(srWORD wSTID);

Description

The srDeleteSTID() routine is used to free STRIDE Runtime resources previously
allocated for an STID. The resources allocated by the following routines will be returned:

• srRegister(..) – registering messages

• srSubscribe(..) – subscribing to messages

Parameters Type Description
wSTID Input STRIDE Transact ID from the srCreateSTID() call

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid

Example

#include <sr.h> // contains prototypes and defines

srWORD wResult;
srDWORD dwMyNID;
srWORD wMySTID;

dwMyNID = 42; // Get ID for platform specific routine

wResult = srCreateSTID(dwMyNID, “MySTIDName” ,&wMySTID, srTRUE);

…

wResult = srDeleteSTID(wMySTID);

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 55

3.2. Messaging

The following routines are used to send and read messages.

• srRegister()

• srRegisterAccessClass()

• srRead()

• srReadComplete()

• srSendCmd()

• srSendRsp()

• srBroadcast()

• srSubscribe()

• srSetAuxData()

• srGetAuxData()

STRIDE Runtime Developer’s Guide

56 Copyright © 2001 – 2010 S2 Technologies, Inc.

srRegister()
Register a one-way or two-way message

Prototype
srWORD srRegister(srWORD wSTID,
 srBOX_e eBox,
 srDWORD dwSMID,
 srBOOL bOn);

Description

The srRegister() routine is used to register a one-way or two-way message. An Owner
must register these message types before they are available for public use. When
registering a message, the Owner must pass in the associated STID and Message Box ID,
the unique STRIDE Message ID (SMID), and an indicator to turn on or off the
registration.

Parameters Type Description
wSTID Input STRIDE Transact Identifier
eBox Input The associated mailbox for the message
dwSMID Input The unique SMID
bOn Input Indicates if registration is On or Off

srTRUE = On
srFALSE = Off

Return Value Description
srOK Success
srERR_STID_INVALID STID has not been created
srERR_SMID_ATTR SMID attributes are incorrect
srERR_SUID_RANGE SUID is not in the valid range
srERR_REG_SET Registration already set
srERR_REG_STORAGE_FULL Registration storage full

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 57

Example

#include <sr.h> // contains API definitions

#define MYSMID_1 1 + (srMT_ONE | srST_CMD_VAL)
#define MYSMID_2 2 + (srMT_TWO | srST_CMD_VAL | srST_RSP_VAL)

srWORD wResult;

// Assumes STID already created

wResult = srRegister(wMySTID, srBOX_1, MYSMID_1, srTRUE);
wResult = srRegister(wMySTID, srBOX_1, MYSMID_2, srTRUE);

STRIDE Runtime Developer’s Guide

58 Copyright © 2001 – 2010 S2 Technologies, Inc.

srRegisterAccessClass()
Registers the Access Class type for message routing

Prototype
srWORD srRegisterAccessClass (srAccessClass_e eAC,
 srWORD wSTID,
 srBOX_e eBox,
 srBOOL bOn);

Description

The srRegisterAccessClass() routine registers the Access Class (AC) type with the
STRIDE Runtime, and associates the STID and mailbox with the Access Class. When set
as an Access Class, function calls and messages with no registered owner will be routed
to the registered STID depending on the Access Class type.

AC types:

• srAC_REG_MESSAGES – for the Remote Messaging

• srAC_REG_FUNCTIONS – for Intercept Modules

Parameters Type Description
eAC Input Access Class of type srAccessClass_e, defined as:

typedef enum
{
 srAC_REG_MESSAGES = 0,
 srAC_REG_FUNCTIONS = 1
} srAccessClass_e;

Values are srAC_REG_MESSAGES or
srAC_REG_FUNCTIONS

wSTID Input The associated STRIDE Transact Identifier for the
Access Class

eBox Input The associated mailbox for the Access Class
bOn Input Set or unset registration

srTRUE = On
srFALSE = Off

Return Value Description
srOK Success
srErr Failure

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 59

Example

Access Class IM Example

// srWORD wSTID -- assumes STID has already been created

srWORD wResult;
wResult = srRegisterAccessClass (srAC_REG_FUNCTIONS,
 wSTID,
 srBOX_1,
 srTRUE);

Remote Messaging Example (RMS & RMP)

// srWORD wSTID -- assumes STID has already been created

srWORD wResult;
wResult = srRegisterAccessClass (srAC_REG_MESSAGES,
 wSTID,
 srBOX_1,
 srTRUE);

STRIDE Runtime Developer’s Guide

60 Copyright © 2001 – 2010 S2 Technologies, Inc.

srRead()
Read command or response

Prototype
srWORD srRead(srWORD wSTID,
 srBOX_e eBox,
 srWORD wMaxRead,
 srDWORD *pdwSMID,
 srBYTE *pyBuffer,
 srWORD *pwSize,
 srDWORD *pdwMsgInst);

Description

The srRead() routine is used to read a command from a User or a response from an
Owner. The STID, Box ID, and maximum number of bytes to read are input parameters.
The SMID, the payload (or address of the payload), size of the payload, and message
instance are output parameters. If no messages are pending for the specified box the
routine will return srERR_QUEUE_EMPTY and zero (0) will be returned for the SMID.

The value written to the pyBuffer depends on the attributes defined within the SMID
being read. If the SMID payload is defined by value then the entire contents of the
payload is written to the address in the parameter list. If the payload is defined as a
pointer then the pointer value is written to the payload parameter. The size parameter
reflects either the size of the value payload (when the payload is by value) or the size of
the data that the pointer points to (if the payload is by pointer).

The Message Instance Identifier represents a unique transaction between an
Owner and User. This identifier contains important routing and resource
information used by the STRIDE Runtime. The identifier is required input
for both the srSendRsp(..) routine and the srReadComplete(..) routine.

Parameters Type Description
wSTID Input STRIDE Transact ID from srCreateSTID() call
eBox Input Box from which to read
wMaxRead Input The max number of bytes allowable to read
pdwSMID Output The SMID read; 0 if nothing in box
pyBuffer Output Input data; address of or payload
pwSize Output Size of the payload data
pdwMsgInst Output The Message Instance ID

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 61

Return Value Description
srOK Success
srERR_STID_INVALID STID has not been created
srERR_QUEUE_EMPTY Message queue empty
srERR_READ_SIZE Read buffer is too small for the message payload

Example

Owner.h

#include <sr.h> // Contains SMID Attributes

#define DOIT_NOW_SMID 10 + (srMT_ONE | srST_CMD_VAL)

typedef struct { // Command payload definition
 srDWORD dwData1;
} Doit_Now_Cmd;

Owner.c

#include <sr.h> // Contains prototypes
#include <owner.h>

#define BIGENOUGH 100

srWORD wResult;
srDWORD dwMySMID;
srBYTE InputBuf[BIGENOUGH];
srWORD wMsgSize;
srDWORD dwMsgInst;

// Assumes STID already setup
wResult = srRegister(wMySTID, srBOX_1, DOIT_NOW_SMID, srTRUE);

// Wait for new message
CustomerWait(…);
…
// Reading a message
wResult = srRead(wMySTID,
 srBOX_1,
 BIGENOUGH,
 &dwMySMID,
 &InputBuf,
 &wMsgSize,
 &dwMsgInst);
if(dwMySMID == DOIT_NOW_SMID)
{

STRIDE Runtime Developer’s Guide

62 Copyright © 2001 – 2010 S2 Technologies, Inc.

 …
}

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 63

srReadComplete()

Prototype
srWORD srReadComplete(srWORD wSTID,
 srDWORD dwMsgInst);

Description

The srReadComplete() routine is used to release any temporary memory allocated to
support marshaling of private memory across platform boundaries.

If no resources have been allocated, this routine returns immediately. The typical location
for the routine is at the end of the message loop used for reading messages.

A payload or pointer that is allocated from a system pool and is required to
be freed by the reader is considered pool memory. A payload or pointer that
is not expected to be freed by the reader is always considered private
memory regardless of where the memory has been allocated

The SMID attrributes are used to define a message’s pointer memory usage (private or
pool). The Pointer Setup routine srEPtrSetup defines a pointer’s memory usage. If either
the SMID or the pointer uses private memory srReadComplete must be called.

When using a private pointer within a two-way command payload which
uses an OUT or INOUT directional attribute, the Owner is required to
respond to the User (calling srSendRsp) before calling this routine; otherwise
srReadComplete can be called after the private memory is no longer needed.

Parameters Type Description
wSTID Input STRIDE Transact ID from the srCreateSTID() call
dwMsgInst Input The sender’s Message Instance Identifier

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid
srERR_PTR_INVALID Pointer handle invalid

STRIDE Runtime Developer’s Guide

64 Copyright © 2001 – 2010 S2 Technologies, Inc.

Example

#include <sr.h> // contains prototypes and defines

#define BIGENOUGH 100

srDWORD dwMySMID;
srBYTE InputBuf[BIGENOUGH];
srWORD wMsgSize;
srDWORD dwMsgInst;

for (;;)
{
 // Wait for new message

 CustomerWait(…);

 // Reading a message Payload

 // Assuming STID already created

 wResult = srRead(wMySTID,
 srBOX_1,
 BIGENOUGH,
 &dwMySMID,
 &InputBuf,
 &wMsgSize,
 &dwMsgInst);

 // Make sure to respond to any 2-ways using Eptr with OUT/INOUT first

 …

 wResult = srReadComplete(wMySTID, dwMsgInst);

}

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 65

srSendCmd()
Send a command

Prototype
srWORD srSendCmd(srWORD wSTID
 srBOX_e eRspBox,
 srDWORD dwSMID,
 srBYTE *pyPayload,
 srWORD wSize);

Description

The srSendCmd() routine is used to send a command to an Owner. The STID, Response
Box ID, SMID, a pointer to the message payload, and the size of the payload are required
input parameters. A User always sets the Box ID required for the response when issuing a
two-way message. The Box ID (eRspBox parameter) is used to determine which box the
response is sent back to. Only a user sending a two way command needs to assign a valid
Box ID in the parameter. The Response Box ID is not applicable for one-way messages.

How the pyPayload parameter is used depends on how the SMID is defined. If the SMID
is defined with a “command by value” attribute, the data is read directly, starting from the
address in the pyPayload parameter. If the SMID is defined with a “command by pointer”
(default) then the pyPayload parameter is an address of a pointer which will be used to
reference the payload data. In the case of “command by pointer” if the SMID is defined
with a “pool pointer command” (default) attribute, the SCM requires that the memory is
allocated from the common pool being used by the system.

The wSize parameter always reflects the size of the payload data. If the SMID
command is “by pointer” then the size reflects the amount of data the pointer
actually points to, not the size of the pointer.

Parameters Type Description
wSTID Input STRIDE Transact ID from the srCreateSTID() call
eRspBox Input The Response Box Identifier
dwSMID Input The unique SMID
pyPayload Input Address (pointer) of the message payload
wSize Input The size of the payload

STRIDE Runtime Developer’s Guide

66 Copyright © 2001 – 2010 S2 Technologies, Inc.

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid
srERR_STID_INACTIVE STID is inactive
srERR_REG_NONE No local registration
srERR_PAL_MEM_ALLOC PAL memory allocation failed
srERR_PTR_ALLOC Pointer allocation failed
srERR_SEND_PRIV Attempt to send private memory without pointers
srERR_PTR_POOL Expected pool pointer memory
srERR_PTR_OVERWRITE Payload pointer does not match pointer entry
srERR_QUEUE_FULL Message queue full
srERR_PAL_NOTIFY_SYS PAL notification to STRIDE Runtime failed
srERR_PAL_NOTIFY_USER PAL notification to user failed

Example

Owner.h

#include <sr.h> // Contains SMID Attributes

#define DOIT_NOW_SMID 20 + (srMT_ONE | srST_CMD_VAL)

typedef struct {
 srDWORD dwData1;
} Doit_Now_Cmd;

User.c

#include <sr.h> // contains prototypes and defines
#include <owner.h>

Doit_Now_Cmd MyDoitNow;
srWORD wResult;

MyDoitNow.dwData1=42;

// Assumes STID already created

wResult = srSendCmd(wMySTID,
 srBOX_1, //Not used in One Way
 DOIT_NOW_SMID,
 (srBYTE *) &MyDoitNow,
 sizeof(MyDoitNow));

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 67

srSendRsp()
Send response

Prototype

srWORD srSendRsp(srWORD wSTID,
 srDWORD dwMsgInst,
 srDWORD dwSMID,
 srBYTE *pyPayload,
 srWORD wSize);

Description

The srSendRsp() routine is used to send a response message to a User. The STID,
Message Instance, SMID, a pointer to the payload, and the size of the payload are
required input parameters. The Owner uses the message instance received from srRead(..)
when responding to a two-way message. This message instance contains routing
information that the STRIDE Runtime uses to correctly route the response.

How the pyPayload parameter is used depends on how the SMID is defined. If the SMID
is defined with a “response by value” attribute then the data is read directly, starting from
the address in the pyPayload parameter. If the SMID is defined with a “response by
pointer” (default) then the pyPayload parameter is an address of a pointer which will be
used to reference the payload data. In the case of “response by pointer” if the SMID is
defined with a “pool pointer response” (default) attribute, the SCM requires that the
memory is allocated from the common pool being used by the system.

The wSize parameter always reflects the size of the payload data. If the SMID
response is “by pointer” then the size reflects the amount of data the pointer
actually points to, not the size of the pointer.

Parameters Type Description
wSTID Input STRIDE Transact ID from the srCreateSTID() call
dwMsgInst Input The sender’s Message Instance Identifier
dwSMID Input The unique SMID
pyPayload Input Address (pointer) of the message payload
wSize Input The size of the payload

STRIDE Runtime Developer’s Guide

68 Copyright © 2001 – 2010 S2 Technologies, Inc.

Return Value Description
srOK Success
srERR_STID_INVALID STID is not valid
srERR_STID_INACTIVE Calling STID routing to inactive STID
srERR_RMT_FAIL Attempt to route remote failed
srERR_PAL_MEM_ALLOC PAL memory allocation failed
srERR_PTR_ALLOC Pointer allocation failed
srERR_SEND_PRIV Attempt to send private memory without pointers
srERR_PTR_POOL Expected pool pointer memory
srERR_PTR_OVERWRITE Payload pointer does not match pointer entry
srERR_PTR_DUPLICATE Duplicate pointer set up
srERR_PTR_LOCKED Pointer in lock state
srERR_QUEUE_FULL Message queue full
srERR_PAL_NOTIFY_SYS PAL notification to STRIDE Runtime failed
srERR_PAL_NOTIFY_USER PAL notification to user failed

Example

Owner.h

#include <sr.h> // Contains SMID Attributes

#define DOIT_LATER_SMID 30 + (srMT_TWO | srST_CMD_VAL | srST_RSP_VAL
)

typedef struct { // Command payload definition
 srDWORD dwData1;
} Doit_Later_Cmd;

typedef struct { // Response payload definition
 srDWORD dwData2;
} Doit_Later_Rsp;

Owner.c

#include <sr.h> // Contains prototypes
#include <owner.h>

#define BIGENOUGH 100

srWORD wResult;
srDWORD dwMySMID;
srBYTE InputBuf[BIGENOUGH];
srWORD wMsgSize;
srDWORD dwMsgInst;

Doit_Later_Cmd * pMyDoitLaterCmd;
Doit_Later_Rsp MyDoitLaterRsp;

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 69

// Assumes STID already created

wResult = srRegister(wMySTID, srBOX_1, DOIT_LATER_SMID, srTRUE);
…

// Wait for new message
CustomerWait(…);
…

// Reading a message
wResult = srRead(wMySTID,
 srBOX_1,
 BIGENOUGH,
 &dwMySMID,
 &InputBuf,
 &wMsgSize,
 &dwMsgInst);
// Sending back a response
if(dwMySMID == DOIT_LATER_SMID)
{
 pMyDoitLaterCmd = (Doit_Later_Cmd) InputBuf;
 MyDoitLaterRsp.dwData2 = pMyDoitLaterCmd->dwData1;
 wResult = srSendRsp(wMySTID,
 dwMsgInst,
 DOIT_LATER_SMID,
 &MyDoitLaterRsp,
 sizeof(MyDoitLaterRsp));

}

STRIDE Runtime Developer’s Guide

70 Copyright © 2001 – 2010 S2 Technologies, Inc.

srBroadcast()
Broadcast response

Prototype

srWORD srBroadcast(srWORD wSTID,
 srDWORD dwSMID,
 srBYTE *pyPayload,
 srWORD wSize);

Description

The srBroadcast() routine is used to broadcast a response to one or more subscribers.
Only the Broadcast message type is applicable for this routine. The STID, SMID, pointer
to the payload, and the size of the payload are required input parameters. Each subscriber
receives its own copy of the message or pointer, depending on the attributes of the
payload.

If there are multiple subscribers on a remote platform only one copy of the response is
transmitted across the link. The Runtime on the remote platform is responsible for
making the necessary copies of the payload for its subscribers. This is done to minimize
traffic across the link. If there are no subscribers then the routine simply returns, cleaning
up any pool memory that was allocated for the broadcast.

How the pyPayload parameter is used depends on how the SMID is defined. If the SMID
is defined with a “response by value” attribute then the data is read directly, starting from
the address in the pyPayload parameter. If the SMID is defined with a “response by
pointer” (default) then the pyPayload parameter is an address of a pointer which will be
used to reference the payload data. In the case of “response by pointer” if the SMID is
defined with a “pool pointer response” (default) attribute, the SCM requires that the
memory is allocated from the common pool being used by the system.

The wSize parameter always reflects the size of the payload data. If the SMID
command is “by pointer” then the size reflects the amount of data the pointer
actually points to, not the size of the pointer.

Each subscriber receives its own unique payload. For “by pointer” payloads
that use pool memory, each subscriber is responsible for freeing its own
payload once it has been read and processed. In addition, all pointers
contained in the payload that have been allocated from the pool, are required
to be freed. If the payload is using private memory, each subscriber is
required to return the message back to the Runtime with a call to
srReadComplete.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 71

Parameters Type Description
wSTID Input STRIDE Transact ID from the srCreateSTID() call
dwSMID Input The unique SMID
pyPayload Input Address (pointer) of the message payload
wSize Input The size of the payload

Return Value Description
srOK Success
srERR_STID_INVALID STID is not valid
srERR_STID_INACTIVE Calling STID routing to inactive STID
srERR_RMT_FAIL Attempt to route remote failed
srERR_PAL_MEM_ALLOC PAL memory allocation failed
srERR_PTR_ALLOC Pointer allocation failed
srERR_SEND_PRIV Attempt to send private memory without pointers
srERR_PTR_POOL Expected pool pointer memory
srERR_PTR_OVERWRITE Payload pointer does not match pointer entry
srERR_QUEUE_FULL Message queue full
srERR_PAL_NOTIFY_SYS PAL notification to STRIDE Runtime failed
srERR_PAL_NOTIFY_USER PAL notification to user failed

Example

Owner.h

#include <sr.h> // Contains SMID Attributes

#define DOIT_GOTIT_SMID 40 + (srMT_BCAST | srST_RSP_VAL)

typedef struct {
 srDWORD dwData3;
} DoitGotit_Rsp;

OwnerCode.c

#include <sr.h> // contains prototypes and defines
#include <owner.h>

srWORD wResult;
DoitGotit_Rsp MyDoitGotit_Rsp;

// Assumes STID already created
wResult = srRegister(wMySTID, srBOX_1, DOIT_GOTIT_SMID, srTRUE);
MyDoitGotit_Rsp.dwData3 = 42;
wResult = srBroadcast(wMySTID,
 DOIT_GOTIT_SMID,
 (srBYTE *) &MyDoitGotit_Rsp,

STRIDE Runtime Developer’s Guide

72 Copyright © 2001 – 2010 S2 Technologies, Inc.

 sizeof(MyDoitGotit_Rsp));

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 73

srSubscribe()
Subscribe to broadcast message

Prototype

srWORD srSubscribe(srWORD wSTID,
 srBOX_e eBox,
 srDWORD dwSMID,
 srBOOL bOn);

Description

The srSubscribe() routine is used to subscribe to a Broadcast message type. Only a
Broadcast message type can be subscribed to. The STID, SMID, Box ID, and the current
state of the subscription are required input parameters.

If a User requires the contents of a payload immediately, the srSendCmd()
routine can be used with a different message ID and the same payload. This is
often required for “state” based information that is only broadcasted when the
data content changes. For this feature to be enabled, the Owner must register the
auxiliary message.

Parameters Type Description
wSTID Input STRIDE Transact Identifier
eBox Input The Box ID to send message to
dwSMID Input The unique SMID
bOn Input Indicates if Subscription is On or Off

srTRUE = On
srFALSE = Off

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid
srERR_SMID_ATTR SMID attributes are incorrect
srERR_SUID_RANGE SUID is not in valid range
 srERR_SUB_ALLOC Subscription allocation failed

STRIDE Runtime Developer’s Guide

74 Copyright © 2001 – 2010 S2 Technologies, Inc.

Example

UserCode.c

#include <sr.h> // contains prototypes and defines
#include <owner.h>

#define BIGENOUGH 100

srWORD wResult;
srDWORD dwMySMID;
srBYTE InputBuf[BIGENOUGH];
srWORD wMsgSize;
srDWORD dwMsgInst;

// Assuming STID already created
wResult = srSubscribe(wMySTID,DOIT_GOTIT_SMID, srBOX_1, srTRUE);

// Example of requesting a immediate response payload

wResult = srSendCmd(wMySTID,
 srBOX_1,
 DOIT_GOTIT_SMID,
 (srBYTE *) srNULL,
 srNULL);
 // Wait for new message

CustomerWait(…);

…

// Reading a message

wResult = srRead(wMySTID,
 srBOX_1,
 BIGENOUGH,
 &dwMySMID,
 &InputBuf,
 &wMsgSize,
 &dwMsgInst);

if(dwMySMID == DOIT_GOTIT_SMID) {

 …

}

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 75

srSetAuxData()
Set Auxiliary Data

Prototype

srWORD srSetAuxData(srWORD wSTID,
 srDWORD dwAuxData);

Description

The srSetAuxData() routine is used to set the value of the auxiliary data for a specific
STID. This data is persisted for as long as an STID is valid. Each time an STID is used to
send a message, the current value of the auxiliary data will be sent along with the
message.

The same auxiliary data will be sent with every message until it is changed by
calling srSetAuxData. The auxiliary data value may be set once and left for the
entire duration an STID is valid or it can be changed with every message sent.

Also, it is important to remember that the auxiliary data must be set before
calling srSendCmd or srSendRsp. The value set will be sent along with your
message to the reader’s message queue.

Parameters Type Description
wSTID Input STRIDE Transact Identifier
dwAuxData Input The auxiliary data to set

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid

STRIDE Runtime Developer’s Guide

76 Copyright © 2001 – 2010 S2 Technologies, Inc.

Example
UserCode.c

#include <sr.h> // contains prototypes and defines
#include <owner.h>

srWORD wResult;
srWORD wMySTID;
srDWORD dwMyAuxData;

// Example of setting the Auxiliary data and sending message
dwMyAuxData = 0x00A01000;

wResult = srSetAuxData(wMySTID, dwMyAuxData);

wResult = srSendCmd(wMySTID,
 srBOX_1,
 DOIT_GOTIT_SMID,
 (srBYTE *) srNULL,
 srNULL);

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 77

srGetAuxData()
Get Auxiliary Data

Prototype

srWORD srGetAuxData(srWORD wSTID,
 srDWORD *pdwAuxData);

Description

The srGetAuxData() routine is used to get the auxiliary data received when reading a
STRIDE message. This data is persisted only until the next message is read. Each time a
message is read, the auxiliary data is saved and available for reading. If another message
is read, then the previous auxiliary data will be overwritten.

The auxiliary data is stored in the message queue along with the message and
is not available to be read until the message has been read with the srRead
command. Once the message has been read the auxiliary data is available to
be read. Also, once the message has been read the auxiliary data will not be
overwritten until the next message is read.

Parameters Type Description
wSTID Input STRIDE Transact Identifier
pdwAuxData Output The auxilliary data read

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid

Example
UserCode.c

#include <sr.h> // contains prototypes and defines
#include <owner.h>

#define BIGENOUGH 100

srWORD wResult;
srDWORD dwMySMID;
srBYTE InputBuf[BIGENOUGH];
srWORD wMsgSize;
srDWORD dwMsgInst;
srDWORD dwMyAuxData;

STRIDE Runtime Developer’s Guide

78 Copyright © 2001 – 2010 S2 Technologies, Inc.

// Example of reading Auxiliary data

// Wait for new message

CustomerWait(…);
…
// Reading a message

wResult = srRead(wMySTID,
 srBOX_1,
 BIGENOUGH,
 &dwMySMID,
 &InputBuf,
 &wMsgSize,
 &dwMsgInst);

// now read the aux data for this message
wResult = srGetAuxData(wMySTID, &dwMyAuxData);

}

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 79

3.3. Pointers

The following routines are used by applications that use pointers.

• srPtrSetup()

• srPtrSetupChild()

• srPtrTeardown()

• srPtrGetHandle()

• srPtrSize()

• srPtrCreateCmdInst()

• srPtrCreateRspInst()

• srPtrDeleteInst()

STRIDE Runtime Developer’s Guide

80 Copyright © 2001 – 2010 S2 Technologies, Inc.

srPtrSetup()

Prototype

srWORD srPtrSetup(srWORD wSTID,
 srDWORD dwSMID,
 srWORD wOffset,
 srWORD *pwOffsetTable,
 srWORD wSize,
 srMsgDir_e eMsgDir,
 srPtrDir_e ePtrDir,
 srPtrUsage_e ePtrUsage,
 srWORD *pwHandle);

Description

The srPtrSetup routine is used to set up a pointer field within a payload. STRIDE
Runtime requires the setup of the pointer field information, enabling the Runtime to route
the pointer locally and marshal the pointer across platforms. The setup routine is required
to be called once for each unique pointer field contained in a payload. A pointer can be
set up once and used for the lifetime of the STID used in the setup, or it can be set up and
torn down for every message transaction.

For command return pointers such as srPTRDIR_CMD_RET, a onetime setup can be
achieved by using the field pwOffsetTable. This table is an array of values used by the
Runtime to route and marshal command return pointers. The first value is the offset
depth. The following values are the corresponding offsets, starting from to topmost parent
pointer offset in the command payload to the actual offset of the pointer in the parent
pointer payload. When setting up a pointer in this mode, the parameter wOffset should
equal the total number of offsets in the table, or the offset depth. This value must match
the first value in the table.

Each user sending a command payload containing a pointer is required to call
the srPtrSetup routine. The owner of a response payload containing a pointer
is required to call the srPtrSetup routine.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 81

Parameters Type Description
wSTID Input STRIDE Transact Identifier from the srCreateSTID() call
dwSMID Input The unique SMID
wOffset Input The pointer field offset within the payload
pwOffsetTable Input The pointer field offset table, containing offset depth and

offsets into parent payloads
wSize Input The byte size of the memory block pointed to.
eMsgDir Input The message direction:

wMSGDIR_COMMAND = 0
wMSGDIR_RESPONSE = 1

ePtrDir Input The direction attribute of the pointer:
srPTRDIR_CMD_IN = 0
srPTRDIR_CMD_OUT = 1
srPTRDIR_CMD_INOUT = 2
srPTRDIR_CMD_RET = 3
srPTRDIR_RSP_RET = 3

ePtrUsage Input The pointer usage attribute:
srPTR_USAGE_PRIVATE = 0
srPTR_USAGE_POOL = 1

pwHandle Output The unique handle of the pointer

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid
 srERR_SUID_RANGE SUID is not in the valid range
srERR_SMID_ATTR SMID attributes are incorrect
srERR_PTR_MSG_DIR Pointer message direction invalid
srERR_PTR_DIR Pointer direction invalid
srERR_PTR_USAGE Pointer memory usage invalid
srERR_PTR_DUPLICATE Duplicate pointer set up
srERR_PTR_OFFSET Pointer offset invalid
srERR_PTR_ALLOC Pointer allocation failed

STRIDE Runtime Developer’s Guide

82 Copyright © 2001 – 2010 S2 Technologies, Inc.

Example

Interface.h
#include <sr.h>

#define INTERFACE_SMID 50 + (srMT_TWO | srST_CMD_VAL | srST_RSP_VAL)

typedef struct
{
 srDWORD *pdwField;
} InterfaceCmd;

IntefaceUser.c
#include <sr.h>
#include <Interface.h>
srWORD wSTID;
srWORD wHandle;
srWORD wResult;
…
 wResult = srPtrSetup(wSTID,
 INTERFACE_SMID,
 GET_OFFSET(InterfaceCmd,pdwField),
 srNULL,
 sizeof(srDWORD),
 srMSGDIR_COMMAND,
 srPTRDIR_CMD_IN,
 srPTR_USAGE_POOL,
 &wHandle);
…
wResult = srPtrTeardown(wSTID,
 INTERFACE_SMID,
 & wHandle);
…

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 83

srPtrSetupChild()

Prototype
srWORD srPtrSetupChild(srWORD wSTID,
 srWORD wParentHandle,
 srWORD wOffset,
 srWORD wSize,
 srPtrDir_e ePtrDir,
 srPtrUsage_e ePtrUsage,
 srWORD *pwHandle);

Description

The srPtrSetupChild() routine is used to set up a child pointer field within a parent
pointer payload. STRIDE Runtime requires the setup of the pointer field information,
enabling the Runtime to route the pointer locally and marshal the pointer across
platforms. The setup routine is required for each child pointer field contained in the
parent pointer payload.

When setting up the child pointer, it is necessary to first set up the parent
pointer or get the handle to the parent pointer.

Each User sending a command payload containing child pointers is required
to call the srPtrSetupChild routine. The Owner of a response payload which
contains child pointers is required to call the srPtrSetupChild routine.

Parameters Type Description
wSTID Input STRIDE Transact ID from the srCreateSTID() call.
wParentHandle Input Handle to the “parent” pointer that holds the nested

(child) pointer
wOffset Input The pointer field offset within the parent pointer payload
wSize Input The byte size of the memory block pointed to.
ePtrDir Input The direction attribute of the pointer

srPTRDIR_CMD_IN = 0
srPTRDIR_CMD_OUT = 1
srPTRDIR_CMD_INOUT = 2
srPTRDIR_CMD_RET = 3
srPTRDIR_RSP_RET = 3

ePtrUsage Input The pointer usage attribute
srPTR_USAGE_PRIVATE = 0
srPTR_USAGE_POOL = 1

pwHandle Output
(Optional)

The unique handle of the nested (child) pointer

STRIDE Runtime Developer’s Guide

84 Copyright © 2001 – 2010 S2 Technologies, Inc.

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid
srERR_PTR_DIR Pointer direction invalid
srERR_PTR_USAGE Pointer memory usage invalid
srERR_PTR_DUPLICATE Duplicate pointer set up
srERR_PTR_OFFSET Pointer offset invalid
srERR_PTR_ALLOC Pointer allocation failed

Example
Interface.h
#include <sr.h>

#define INTERFACE_SMID 50 + (srMT_TWO | srST_CMD_VAL |
srST_RSP_VAL)

typedef struct
{
 srDWORD *pdwChild;
} InterfaceCmdFieldType;

typedef struct
{
 InterfaceCmdFieldType *ptField;
} InterfaceCmd;

IntefaceUser.c
#include <sr.h>
#include <Interface.h>

srWORD wSTID, wParentHandle, wResult;

wResult = srPtrSetup(wSTID,
 INTERFACE_SMID,
 GET_OFFSET(InterfaceCmd,ptField),
 srNULL,
 sizeof(InterfaceCmdFieldType),
 srMSGDIR_COMMAND,
 srPTRDIR_CMD_IN,
 srPTR_USAGE_POOL,
 &wParentHandle);
wResult = srPtrSetupChild(wSTID,
 wParentHandle,
 GET_OFFSET(InterfaceCmdFieldType,pdwChild),
 sizeof(srDWORD),
 srPTRDIR_CMD_IN,
 srPTR_USAGE_POOL,
 srNULL);
wResult = srPtrTeardown(wSTID,
 INTERFACE_SMID,

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 85

 &wParentHandle);

STRIDE Runtime Developer’s Guide

86 Copyright © 2001 – 2010 S2 Technologies, Inc.

srPtrTeardown()
Free pointer handle

Prototype
srWORD srPtrTeardown(srWORD wSTID,
 srDWORD dwSMID,
 srWORD wHandle)

Description

The srPtrTeardown routine is used to free the pointer handle previously allocated for the
pointer setup.

Parameters Type Description
wSTID Input STRIDE Transact ID from the srCreateSTID() call
dwSMID Input The unique SMID
wHandle

Input Handle of the pointer from srPtrSetup or srPtrSetupChild

Return Value Description
srOK Success
srERR_STID_INVALID STID invalid
srERR_PTR_INVALID Pointer handle invalid
srERR_PTR_TEARDOWN Pointer teardown failed

Example

Interface.h
#include <sr.h>

#define INTERFACE_SMID 50 + (srMT_TWO | srST_CMD_VAL |
srST_RSP_VAL)

typedef struct
{
 DWORD *pdwField;
} InterfaceCmd;

IntefaceUser.c

#include <sr.h>
#include <Interface.h>

srWORD wSTID;
srWORD wHandle;
srWORD wResult;

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 87

…

wResult = srPtrSetup(wSTID,
 INTERFACE_SMID,
 GET_OFFSET(InterfaceCmd,pdwField),
 srNULL,
 sizeof(srDWORD),
 srMSGDIR_COMMAND,
 srPTRDIR_CMD_IN,
 srPTR_USAGE_POOL,
 &wHandle);
…
wResult = srPtrTeardown(wSTID,
 INTERFACE_SMID,
 &wHandle);

…

STRIDE Runtime Developer’s Guide

88 Copyright © 2001 – 2010 S2 Technologies, Inc.

srPtrGetHandle()
Retrieve handle

Prototype
srWORD srPtrGetHandle(srWORD wSTID,
 srDWORD dwMsgInst,
 srBYTE *pyMemory,
 srWORD *pwHandle);

Description

The srPtrGetHandle routine is used to retrieve a handle to a pointer using the message
instance. This is used primarily by the Owner to access the handles of OUT and INOUT
pointers in the message instance. The Owner then uses the handle to either change the
size of the pointer, or to attach CMD_RET pointers.

Parameters Type Description
wSTID Input STRIDE Transact Identifier frm the srCreateSTID() call
dwMsgInst Input Message instance
pyMemory Input Pointer memory address
pwHandle Output Handle to the pointer in the dwMsgInst

Return Value Description
srOK Success
srERR_STID_INVALID STID invalid
srERR_PTR_INVALID Pointer handle invalid
srERR_PTR_ADDRESS Pointer address not found
srERR_PTR_LOCKED Pointer in lock state
srERR_PTR_DIR Pointer direction invalid

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 89

Example

Owner.h

#include <sr.h> // Contains SMID Attributes

#define DOIT_NOW_SMID 60 + (srMT_ONE | srST_CMD_VAL)

typedef srDWORD * MyDoitNow_t;

UserCode.c

#include <sr.h> // contains prototypes and defines
#include <owner.h>

MyDoitNow_t MyDoitNow;
srWORD wMyEPtrHandle;
srWORD wResult;

…

// Assuming STID already created
wResult = srEPtrSetup(wMySTID,
 DOIT_NOW_SMID,
 0, // Offset is zero
 srMSGDIR_COMMAND,
 srEPTRDIR_IN,
 srEPTR_USAGE_POOL,
 &wMyEPtrHandle);

 …

wResult = srEPtrTearDown(wMyEPtrHandle);

STRIDE Runtime Developer’s Guide

90 Copyright © 2001 – 2010 S2 Technologies, Inc.

srPtrSize()
Change pointer setup size field

Prototype
srWORD srPtrSize (srWORD wSTID,
 srWORD wHandle,
 srWORD wSize);

Description

The srPtrSize routine is used to change the pointer setup size field for a pointer that has
been set up previously. This allows the original pointer setup to be modified without
tearing down the pointer and setting it up again with a new size. When an Owner
responds with an OUT or INOUT pointer, the size of the OUT or INOUT pointer can be
reduced if necessary, in order to minimize the number of bytes transferred between
platforms.

Parameters Type Description
wSTID Input STRIDE Transact Identifier from the srCreateSTID() call
wHandle Input Pointer handle
wSize Input New size for the pointer setup information

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid
srERR_PTR_INVALID Pointer handle invalid
srERR_PTR_SIZE Pointer size is larger than the current size

When the Owner updates the size of an OUT or INOUT pointer, the new size
can never be larger than the original size previously attached by the User.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 91

Example

Interface.h

#include <sr.h>

#define INTERFACE_SMID 50 + (srMT_TWO | srST_CMD_VAL | srST_RSP_VAL)

typedef struct
{
 srDWORD *ptSizedOut;
} InterfaceCmd;

IntefaceUser.c

#include <sr.h>
#include <Interface.h>

srWORD wSTID;
srWORD wHandle;
srWORD wResult;
…
wResult = srPtrSetup(wSTID,
 INTERFACE_SMID,
 GET_OFFSET(InterfaceCmd,ptSizedOut),
 srNULL,
 sizeof(DWORD) * 10,
 srMSGDIR_COMMAND,
 srPTRDIR_CMD_OUT,
 srPTR_USAGE_PRIVATE,
 &wHandle);

wResult = srSendCmd(…);

…

InterfaceOwner.c

#include <sr.h>
#include <Interface.h>

…
wResult = srRead(wSTID,
 srBOX_1,
 INTERFACE_SIZE,
 &dwSMID,
 &tInterfaceCmd,
 &sizeof(InterfaceCmd),
 &dwMsgInst);

if(dwSMID == INTERFACE_SMID)
{

STRIDE Runtime Developer’s Guide

92 Copyright © 2001 – 2010 S2 Technologies, Inc.

…

 /* get the handle to the out pointer */
 srPtrGetHandle(wSTID,
 dwMsgInst,
 tInterfaceCmd.ptSizedOut,
 &wHandle);

 /* reduce the size of the out pointer */
 srPtrSize(wSTID,
 wHandle,
 sizeof(srDWORD) * 5);

…

}

…

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 93

srPtrCreateCmdInst()
Create command pointer instance

Prototype
srWORD srPtrCreateCmdInst (srWORD wSTID,
 srDWORD dwSMID,
 srBYTE *pyPayload,
 srWORD wSize,
 srDWORD *pdwCmdInst);

Description

The srPtrCreateCmdInst routine is used to create a command pointer instance for
srTraceInterface. This is used primarily for delegates for local tracing.

Parameters Type Description
wSTID Input STRIDE Transact Identifier from the srCreateSTID() call
dwSMID Input The unique SMID
pyPayload Input Command payload
wSize Input Command payload size
pdwCmdInst Output Command pointer instance

Return Value Description
srOK Success
srERR_PTR_OVERWRITE Payload pointer does not match pointer entry
srERR_PTR_ALLOC Pointer allocation failed

 dwCmdInst must be deleted by calling srPtrDeleteInst.

STRIDE Runtime Developer’s Guide

94 Copyright © 2001 – 2010 S2 Technologies, Inc.

srPtrCreateRspInst()
Create response pointer instance

Prototype
srWORD srPtrCreaterRspInst (srWORD wSTID,
 srDWORD dwSMID,
 srBYTE *pyPayload,
 srDWORD dwCmdInst,
 srDWORD *pdwRspInst);

Description

The srPtrCreateRspInst routine is used to create a response pointer instance for
srTraceInterface. This is used primarily for delegates for local tracing.

Parameters Type Description
wSTID Input STRIDE Transact Identifier from the srCreateSTID() call
dwSMID Input The unique SMID
pyPayload Input Command payload
wSize Input Command payload size
dwCmdInst Input Command pointer instance
pdwRspInst Output Response pointer instance

Return Value Description
srOK Success
srERR_PTR_OVERWRITE Payload pointer does not match pointer entry
srERR_PTR_ALLOC Pointer allocation failed
srERR_PTR_INVALID Pointer handle invalid
srERR_PTR_DUPLICATE Pointer setup duplicate
srERR_PTR_LOCKED Pointer in lock state

 dwRspInst must be deleted by calling srPtrDeleteInst.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 95

srPtrDeleteInst()
Delete pointer instance

Prototype
srWORD srPtrDeleteInst (srWORD wSTID,
 srDWORD dwPtrInst);

Description

The srPtrDeleteInst routine is used to delete a pointer instance created by
srPtrCreateCmdInst or srPtrCreateRspInst. This is used primarily by delegates for local
tracing.

Parameters Type Description
wSTID Input STRIDE Transact Identifier from the srCreateSTID() call
dwPtrInst Input Pointer instance

Return Value Description
srOK Success
srERR_PTR_INVALID Pointer handle invalid

 dwPtrInst is created by srPtrCreateCmdInst or srPtrCreateRspInst.

STRIDE Runtime Developer’s Guide

96 Copyright © 2001 – 2010 S2 Technologies, Inc.

3.4. Tracing

The following tracing routines are used by applications to instrument their software for
greater visibility. The information collected by the STRIDE Runtime routines is available
for collection by the host runtime environment. Each of the tracing routines requires a
level as a parameter used for filtering. There are 8 levels supported by the STRIDE
Runtime, with level zero (0) being the highest priority and level 7 being the lowest. If a
tracing level of 3, for example, is selected then all traces of level 0, 1, 2 and 3 will be
displayed.

The Tracing routines include:

• srTracePoint()

• srTraceStr()

• srTraceInterface()

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 97

srTracePoint()
Output data structure

Prototype

srWORD srTracePoint(srWORD wSTID,
 srWORD wSTPID,
 srBYTE *pyPayload,
 srWORD wSize,
 srLevel_e eLevel);

Description

The srTracePoint() routine is used to output a data structure to the tracing window. The
eLevel parameter is used to filter out different levels.

Parameters Type Description
wSTID Input STRIDE Transact Identifier
wSTPID Input The unique STRIDE TracePoint ID
pyPayload Input Pointer to a payload
wSize Input The size of the payload
eLevel Input Indicates the tracing level to use

srLEVEL_0 = 0
srLEVEL_1 = 1
srLEVEL_2 = 2
srLEVEL_3 = 3
srLEVEL_4 = 4
srLEVEL_5 = 5
srLEVEL_6 = 6
srLEVEL_7 = 7

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid

STRIDE Runtime Developer’s Guide

98 Copyright © 2001 – 2010 S2 Technologies, Inc.

Example

#include <sr.h> // contains prototypes and eLevel Type defines

#define DOIT_NOW_STPID 10

typedef struct {
 srBOOL bValid;
 srDWORD dwData;
} Doit_Now_TP;

Doit_Now_TP MyDoit_Now;
srWORD wResult;

MyDoit_Now.bValid = srTRUE;
MyDoit_Now.dwData = 43;

// Assuming STID already created
wResult = srTracePoint(wMySTID,
 DOIT_NOW_STPID,
 (srBYTE *)&MyDoit_Now,
 sizeof(MyDoit_Now),
 srLEVEL_0);

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 99

srTraceStr()
Output string

Prototype

srWORD srTraceStr(srWORD wSTID,
 srCHAR *szString,
 srLevel_e eLevel);

Description

The srTraceStr() routine is used to output a string that is automatically converted to a
special trace point. The host runtime environment automatically displays this special
trace point without requiring a unique STPID. The eLevel parameter is used to provide
filtering based on levels.

Parameters Type Description
wSTID Input STRIDE Transact Identifier.
szString Input A null terminated string.
eLevel Input Indicates the tracing level to use:

srLEVEL_0 = 0
srLEVEL_1 = 1
srLEVEL_2 = 2
srLEVEL_3 = 3
srLEVEL_4 = 4
srLEVEL_5 = 5
srLEVEL_6 = 6
srLEVEL_7 = 7

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid

Example

#include <sr.h> // contains prototypes and eLevel Type defines

srWORD wResult;

// Assuming STID already created

wResult = srTraceStr(wMySTID, ”Should never get here!”, srLEVEL_0);

STRIDE Runtime Developer’s Guide

100 Copyright © 2001 – 2010 S2 Technologies, Inc.

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 101

srTraceInterface()
Trace an interface

Prototype

srWORD srTraceInterface (srWORD wSTID,
 srWORD wSUID,
 srBYTE *pyPayload,
 srWORD wSize,
 srDWORD dwPtrInst,
 srTraceType_e eTraceType);

Description

The srTraceInterface() routine is used to trace an interface. The eTraceType parameter
specifies the interface trace type.

Command and response pointer instances for srTraceInterface are created by
srPtrCreateCmdInst and srPtrCreateRspInst, respectively. These are used primarily by
delegates for local tracing.

Parameters Type Description
dwPtrInst Input Handle returned by srPtrCreateCmdInst or

srPtrCreateRspInst depending on eTraceType
eTraceType Input Interface trace type

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid
srERR_TRACE_TYPE Interface trace type invalid

STRIDE Runtime Developer’s Guide

102 Copyright © 2001 – 2010 S2 Technologies, Inc.

3.5. Printing

The following printing routines are used by applications to display messages on Trace
Views without having to specify a STID or a trace level and to set any trace filters on
Trace Views. These routines support formatted strings with variable arguments. The
srPrintInfo() will show as srTraceStr() with STID=0 and Level=3. The srPrintError() will
show as srTraceStr() with STID=0 and the Level=1.

The Printing routines include:

• srPrintInfo()

• srPrintError()

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 103

srPrintInfo()
Output formatted string

Prototype

srWORD srPrintInfo(const srCHAR * szMsg, ...);

Description

The srPrintInfo() routine is used to output a formatted string with variable arguments that
is automatically converted to a special trace string - srTraceStr with STID=0 and
Level=3. The host runtime environment automatically displays this formatted string
without having to set any trace filters.

Parameters Type Description
szMsg Input A string, which can be formatted.

Cannot be null.
... Input

(Optional)
Variable argument list to format the string szFmt.

Return Value Description
srOK Success
srERR STID is invalid

Example

#include <sr.h> // contains prototypes

srWORD wResult;
srWORD wNum1 = 5;
srWORD wNum2 = 10;

wResult = srPrintInfo(”My info numbers: %d, %d”, wNum1, wNum2);

STRIDE Runtime Developer’s Guide

104 Copyright © 2001 – 2010 S2 Technologies, Inc.

srPrintError()
Output formatted string

Prototype

srWORD srPrintError(const srCHAR * szMsg, ...);

Description

The srPrintError() routine is used to output a formatted string with variable arguments
that is automatically converted to a special trace string - srTraceStr with STID=0 and
Level=1. The host runtime environment automatically displays this formatted string
without having to set any trace filters.

Parameters Type Description
szMsg Input A string, which can be formatted.

Cannot be null.
... Input

(Optional)
Variable argument list to format the string szFmt.

Return Value Description
srOK Success
srERR STID is invalid

Example

#include <sr.h> // contains prototypes

srWORD wResult;
srWORD wNum1 = 5;
srWORD wNum2 = 10;

wResult = srPrintError(”My error numbers: %d, %d”, wNum1, wNum2);

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 105

3.6. Query

The following routines are used to retrieve status and internal information stored in the
STRIDE Runtime.

• srQueryAccessClass()

• srQueryNID()

• srQueryName()

• srQuerySMID()

• srQueryBox()

STRIDE Runtime Developer’s Guide

106 Copyright © 2001 – 2010 S2 Technologies, Inc.

srQueryAccessClass()
Query Access Class for registration

Prototype
srWORD srQueryAccessClass (srAccessClass_e eAC,
 srWORD *pwSTID,
 srBOX_e *peBox);

Description

The srQueryAccessClass() routine is used to query if the given Access Class is registered
with the STRIDE Runtime. If registered, the associated STID and mailbox are returned.

Parameters Type Description
eAC Input Access Class of type srAccessClass_e, defined as:

typedef enum
{
 srAC_REG_MESSAGES = 0,
 srAC_REG_FUNCTIONS = 1
} srAccessClass_e;

Values are srAC_REG_MESSAGES or
srAC_REG_FUNCTIONS

pwSTID Output The associated STRIDE Transact Identifier for the
Access Class

peBox Output The associated mailbox for the Access Class

Return Value Description
srOK Success
srErr Failure

Example

srWORD wResult;
srWORD wSTID;
srBOX_e eBox;
wResult = srQueryAccessClass(srAC_IM, &wSTID, &eBox);

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 107

srQueryNID()
Retrieve STID From NID

Prototype

srWORD srQueryNID(srDWORD dwNID,
 srWORD *pwSTID);

Description

The srQueryNID() routine is used to retrieve the STID associated with a NID. This is the
STID that was created using srCreateSTID().

Parameters Type Description
DwNID Input Notification Identifier
pwSTID Output STRIDE Transact ID associated with NID

Return Value Description
srOK Success
srERR_NID_NOT_FOUND No STID created for NID

Example

#include <sr.h> // contains prototypes and defines

srWORD wResult;
srWORD wSTID;
srDWORD dwMyThreadId;

dwMyThreadId = CustomerGetCurrentThreadId();

wResult = srQueryNID(dwMyThreadId, &wSTID);

STRIDE Runtime Developer’s Guide

108 Copyright © 2001 – 2010 S2 Technologies, Inc.

srQueryName()
Look up STID based on STID name

Prototype

srWORD srQueryName (srCHAR *szName,
 srWORD *pwSTID);

Description

The srQueryName() routine is used to look up the STID based on the STID’s name. It
takes a null-terminated string as a parameter and returns the STID. The name was set
when the STID was created by the call srCreateSTID.

Parameters Type Description
szName Input Name used when creating the STID
pwSTID Output STRIDE Transact Identifier (STID)

Return Value Description
srOK Success
srERR_NAME_NOT_FOUND No matching STID for name

Example

#include <sr.h> // contains prototypes and defines

srWORD wResult;

srWORD wSTID;

// Assuming NID already setup

wResult = srCreateSTID(dwMyNID, "MySTIDName", wSTID, srTRUE);

wResult = srQueryName("MySTIDName", &wSTID);

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 109

srQuerySMID()
Query a specific SMID

Prototype

srWORD srQuerySMID (srDWORD dwSMID,
 srSMIDInfo_t *ptSMIDInfo);

Description

The srQUERYSMID routine is used to query information about a specific STRIDE
Message ID (SMID). It will return the MID, SMID attributes, registration status,
registered STID, and number of current subscribers (if applicable).

Parameters Type Description
dwSMID Input The unique SMID
ptSMIDInfo Output ptSMIDInfo is of type srSMIDInfo_t, defined as:

typedef struct
{
 srBOOL bReg;
 srBYTE yRegSTID;
 srBOX_e eRegBox;
 srBOOL bRegOverride;
 srWORD wSubIdsCnt;
} srSMIDInfo_t;
bReg: Registration status
 srTrue = Registered
 srFalse = Not registered
yRegSTID: Registered STID
eRegBox: Specified message box
bRegOverride: Register override
wSubsIdsCnt: Count of current subscribers

Return Value Description
srOK Success
srERR_SMID_OUT_OF_RANGE SMID is not in configured range

This routine can be used to avoid the overhead of generating broadcast
information if there are no subscribers. Also, the STRIDE Runtime only
broadcasts response payloads when one or more active subscribers exists.

This routine only checks the SMID on the local platform. Refer to the
STRIDE Runtime Message Services (srmsg.h) to check a SMID on a remote
platform.

STRIDE Runtime Developer’s Guide

110 Copyright © 2001 – 2010 S2 Technologies, Inc.

Example

Owner.h

#include <sr.h> // Contains SMID Attributes

#define DOIT_GOTIT_SMID 40 + (srMT_BCAST | srST_RSP_VAL)

typedef struct {
 srDWORD dwData3;
} DoitGotit_Rsp;

OwnerCode.c

#include <sr.h> // contains prototypes and defines
#include <owner.h>

srWORD wResult;
DoitGotit_Rsp MyDoitGotit_Rsp;
srSMIDInfo_t tSMIDInfo;

// Assumes STID already created
wResult = srRegister(wMySTID, srBOX_1, DOIT_GOTIT_SMID, srTRUE);

MyDoitGotit_Rsp.dwData3 = 42;

wResult = swQuerySMID(DOIT_GOTIT_SMID, &tSMIDInfo);

if ((tSMIDInfo.wSubsIdsCnt >= 0) {

 wResult = srBroadcast(wMySTID, DOIT_GOTIT_SMID,
 (srBYTE *) &MyDoitGotit_Rsp,
 sizeof(MyDoitGotit_Rsp));

}

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 111

srQueryBox()
Check mailbox

Prototype

srWORD srQueryBox (srDWORD wSTID,
 srBox_e eBox,
 srBoxInfo_t *ptBoxInfo);

Description

The srQueryBox() routine is used to check a specific mailbox, reporting the number of
pending messages, the next message’s SMID, and the size of the next message in the box.

Parameters Type Description
wSTID Input STRIDE Transact Identifier
eBox Input The mailbox to check
ptBoxInfo Output The number of pending messages, the next message’s

SMID, and the size of the next message in the box.

Return Value Description
srOK Success
srERR_STID_INVALID STID is invalid

Example

#include <sr.h> // contains prototypes and defines

srWORD wResult;
srBoxInfo tBoxInfo;

 …

wResult = swQueryBox(wMySTID,
 srBOX_1,
 &tBoxInfo);

if (tBoxInfo.wNumPending > 0)
{
 //messages waiting, do something.
}

STRIDE Runtime Developer’s Guide

112 Copyright © 2001 – 2010 S2 Technologies, Inc.

3.7. Access Class (Remote Messaging) Routines

These routines are used for Access Class registration, which includes Remote Messaging
and Access Class Intercept Module.

• srRegisterAccessClass() – see Section 3.2 on Messaging

• srQueryAccessClass() – see Section 3.5 on Query

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 113

3.8. I-block

This routine is used to indicate when the next I-block can be sent out to the system
transport mechanism.

• srIBlockOutReady()

srIBlockOutReady()
IBlockOut Is Ready

Prototype

srWORD srIblockOutReady(void)

Description

The srIBlockOutReady() routine is called to indicate to the STRIDE Runtime that the
system transport mechanism is ready to dispatch an I-block. Any pending I-block will be
queued in the STRIDE Runtime until this routine is called.

After this routine is called palOut() is called to send out the next pending I-block. If the
transport mechanism uses static buffers to receive an I-block, this function should be used
once the buffer can be safely overwritten.

Parameters Type Description
None

Return Value Description
srWORD srOK Success

Example

#include <sr.h> // contains prototypes and defines

srWORD wResult;
srBYTE yTPBuffer[MAX_TP_SIZE];
…

// Send current buffer
CustomerTransportSendBuffer(&yTPBuffer);

// done with buffer, indicate ready for next I-block
wResult = srIblockOutReady();

STRIDE Runtime Developer’s Guide

114 Copyright © 2001 – 2010 S2 Technologies, Inc.

3.9. Runtime Thread Entry and Exit Points

These routines are related to the operation of the STRIDE Runtime Thread.

• srThread()

• srThreadInit()

• srThreadUninit()

• srThreadProc()

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 115

srThread()
STRIDE Runtime Thread

Prototype

void srThread(void);

Description

The STRIDE Runtime entry points consist of srThreadInit and srThreadProc. The
srThread routine combines the two entry points into a single control loop.

Parameters Type Description
None

Return Value Description
None

Example
#include <sr.h> // contains prototypes and defines

void StartApplication(void)
{
. . .
rtosBeginThread(srThread,PRIORITY,&dwThreadId);
}

STRIDE Runtime Developer’s Guide

116 Copyright © 2001 – 2010 S2 Technologies, Inc.

srThreadInit()
STRIDE Runtime Initialization

Prototype

void srThreadInit(void);

Description

The srThreadInit routine is used to initialize the STRIDE Runtime. If srThread is
spawned on the Target system, this routine does not need to be directly called; otherwise,
the user must call srThreadInit before using the STRIDE Runtime.

Parameters Type Description
None

Return Value Description
None

Example
#include <sr.h> // contains prototypes and defines

void StartApplication(void)
{
. . .
/*

 NOT CALLED rtosBeginThread(srMiddleThread,PRIORITY,&dwThreadId);

 / . . .
 . . .
 srThreadInit(); /* must be called before using the STRIDE Runtime
*/

}

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 117

srThreadUninit()
STRIDE Runtime Uninitialization

Prototype

void srThreadUninit(void);

Description

The srThreadUninit routine is used to uninitialize the STRIDE Runtime. If srThread is
spawned on the Target system, this routine does not need to be directly called; otherwise,
the user must call srThreadUninit to shutdown the STRIDE Runtime.

Parameters Type Description
None

Return Value Description
None

Example
#include <sr.h> // contains prototypes and defines

void StopApplication(void)
{
 . . .
 srThreadUninit(); /* must be called when stopping STRIDE Runtime */

}

STRIDE Runtime Developer’s Guide

118 Copyright © 2001 – 2010 S2 Technologies, Inc.

srThreadProc()
STRIDE Runtime Thread

Prototype

void srThreadProc (void);

Description

The srThreadProc routine is used to process the STRIDE Runtime system events. This
does not need to be called if spawning srThread; otherwise, the user must call
srThreadProc to drive the Runtime engine.

Parameters Type Description
None

Return Value Description
None

Example
#include <sr.h> // contains prototypes and defines

void StartApplication(void)
{
 . . .
/*

 NOT CALLED rtosBeginThread(srMiddleThread,PRIORITY,&dwThreadId);

 */

srThreadInit();
 …

 /* main processing loop */

 for(;;)
 …
 srThreadProc();
 …
}

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 119

3.10. Host Override Routines

These routines are related to the use of Intercept Modules.

• srHostIMPoolMemOverride()

STRIDE Runtime Developer’s Guide

120 Copyright © 2001 – 2010 S2 Technologies, Inc.

srHostShutdownIM()
STRIDE Runtime Thread

Prototype

typedef void (*srHostIMShutdownFunc_t) (void);

srDWORD srHostShutdownIM (srHostIMShutdownFunc_t pShutdownFunc);

Description

srHostShutdownIM() is used to shut down a STRIDE Intercept Module thread started
with srHostStartIM(). This routine will call the Intercept Module shutdown routine
passed in as a parameter. The routine cleans up associated STRIDE resources after the
thread has finished.

Parameters Type Description
pShutdownFunc Input Pointer to an IM Shutdown routine.

Return Value Description
None

Example
#include <sr.h> // contains prototypes and defines
#include <myFuncsIM.h> // STRIDE generated Intercept Module

void myAppInit(void)
{
 . . .
 srHostStartIM(myFuncsIMInit, // IM Init routine
 myFuncsIMRead) // IM Read routine
 . . .
}
void myApp(void)
{
 int x;
 . . .
 x = myFunc(123); //calls proxy to myFunc().
 //synchronization between Proxy/Stub handled
 //by STRIDE Host.
}
void myAppExit(void)
{
 ...
 srHostShutdownIM(myFuncsIMShutdown);
 ...

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 121

}

STRIDE Runtime Developer’s Guide

122 Copyright © 2001 – 2010 S2 Technologies, Inc.

3.11. Connecting

The following messages are used to connect to a remote platform or disconnect from an
already established remote connection.

• srCONNECT_OPEN_T_SMID

• srCONNECT_CLOSE_T_SMID

• srCONNECT_STATUS_B_SMID

• srCONNECT_STATUS_T_SMID

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 123

srCONNECT_OPEN_T_SMID
Request remote connection

The srCONNECT_OPEN_T_SMID message is a two-way message used to request a
remote connection. If the request timeouts, the Runtime will enter the Listen state.

Attributes Description
srMT_TWO Two-way message
srST_RSP_VAL Response payload sent by value
srAC_SYS STRIDE Runtime system message

Command Description
No payload Used to initiate a connection

Response Description
srConnectOpenRsp_t Contains the results of the connection request.
 eConnection Indicates the connection result:

srCONNECTION_CLOSED = 0
srCONNECTION_OPEN = 1
srCONNECTION_LISTEN = 2

Example
#include <sr.h> // contains prototypes and defines
#include <srmsg.h> // contains message definitions

srWORD wResult, wMsgSize;
srDWORD dwMySMID, dwMsgInst;
srConnectOpenRsp_t tConnectOpenRsp;

//assumes STID already created
wResult = srSendCmd(wMySTID, srBOX_1, CONNECT_OPEN_T_SMID,
 srNULL, 0);

//Wait for Response
CustomerEventWait(CUST_EVENT_MBOX1);
wResult = srRead(wMySTID, srBOX_1,
 sizeof(tConnectOpenRsp), &dwMySMID,
 (srBYTE*)&tConnectOpenRsp,
 &wMsgSize, &dwMsgInst);

// check to see if connected successfully
if(tConnectOpenRsp.eConnection != srCONNECTION_OPEN)
{
 //do something
}

STRIDE Runtime Developer’s Guide

124 Copyright © 2001 – 2010 S2 Technologies, Inc.

See Also

srIntialize, srSendCmd, srRead, srCONNECT_CLOSE_T_SMID

srCONNECT_CLOSE_T_SMID
Terminate remote connection

The srCONNECT_CLOSE_T_SMID message is a two-way message used to terminate a
remote connection. This command has no payload. When the connection is closed the
response is returned. To check the connection status the srCONNECT_STATUS_B_SMID
subscription can be used.

Attributes Description
srMT_TWO Two-way message
srAC_SYS STRIDE Runtime system message

Command Description
No payload Used to close a connection

Response Description
No payload Indicates the connection has been released

Example

#include <sr.h> // contains prototypes and defines
#include <srmsg.h> // contains message definitions

srWORD wResult;
srDWORD dwMySMID;
srWORD wMsgSize;
srDWORD dwMsgInst;

//assumes STID already created
wResult = srSendCmd(wMySTID,
 srBOX_1,
 srCONNECT_CLOSE_T_SMID,
 (srBYTE*)NULL,
 0);

//Wait for Response
CustomerEventWait(CUST_EVENT_MBOX1);

wResult = srRead(wMySTID
 srBOX_1,
 0,
 &dwMySMID,
 0,

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 125

 &wMsgSize,
 &dwMsgInst);

srCONNECT_STATUS_B_SMID
Broadcast connection status change

The srCONNECT_STATUS_B_SMID message is broadcast when the connection status
changes.

Attributes Description
srMT_BRD Broadcast message
srST_RSP_VAL Response payload sent by value
srAC_SYS STRIDE Runtime system message

Response Description
srConnectOpenRsp_t Contains the results of the connection request
eConnection Indicates the Connection results:

srCONNECTION_CLOSED = 0
srCONNECTION_OPEN = 1
srCONNECTION_LISTEN = 2

Example

#include <sr.h> // contains prototypes and defines
#include <srmsg.h> // contains message definitions

srWORD wResult;
srDWORD dwMySMID;
srWORD wMsgSize;
srDWORD dwMsgInst;
srConnectStatusRsp_t tConnectStatusRsp;

//assumes STID already created
wResult = srSubcribe(MySTID,srBOX_1,srCONNECT_STATUS_B_SMID,srTRUE);

CustomerEventWait(CUST_EVENT_MBOX1);

wResult = srMsgRead(wMySTID,
 srBOX_1,
 sizeof(tConnectStatusRsp),
 &dwMySMID,
 (srBYTE*)&tConnectStatusRsp,
 &wMsgSize,
 &dwMsgInst);

if(tConnectStatusRsp.eConnection != srCONNECTION_OPEN)

STRIDE Runtime Developer’s Guide

126 Copyright © 2001 – 2010 S2 Technologies, Inc.

{
 //Lost connection
}

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 127

srCONNECT_STATUS_T_SMID
Request Connection Status

The srCONNECT_STATUS_T_SMID message

Attributes Description
srMT_TWO Two-way message
srST_RSP_VAL Response payload sent by value
srAC_SYS STRIDE Runtime system message

Response Description
srConnectOpenRsp_t Contains the results of the connection request.
eConnection Indicates the Connection results:

srCONNECTION_CLOSED = 0
srCONNECTION_OPEN = 1
srCONNECTION_LISTEN = 2

Example

#include <sr.h> // contains prototypes and defines
#include <srmsg.h> // contains message definitions

srWORD wResult;
srDWORD dwMySMID;
srWORD wMsgSize;
srDWORD dwMsgInst;
srConnectStatusRsp_t tConnectStatusRsp;

//assumes STID already created
wResult = srSendCmd(wMySTID,
 srBOX_1,
 srCONNECT_STATUS_T_SMID,
 (srBYTE*)NULL,
 0);
//Wait for Response
CustomerEventWait(CUST_EVENT_MBOX1);

wResult = srMsgRead(wMySTID,
 srBOX_1,
 sizeof(tConnectStatusRsp),
 &dwMySMID,
 (srBYTE*)&tConnectStatusRsp,
 &wMsgSize,
 &dwMsgInst);

if(tConnectStatusRsp.eConnection != srCONNECTION_OPEN)
{
 //Lost connection
}

STRIDE Runtime Developer’s Guide

128 Copyright © 2001 – 2010 S2 Technologies, Inc.

3.12. Database Loading Routines

The following messages are used to load the STRIDE databases.

• srHOST_LOAD_DB_O_SMID

• srHOST_LOAD_DB_STATUS_B_SMID

• srHOST_LOAD_DB_STATUS_T_SMID

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 129

srHOST_LOAD_DB_O_SMID
Load database file

The srHOST_LOAD_DB_O_SMID message is used to tell the Host Runtime to load a
STRIDE database file.

Attributes Description
srMT_ONE One-way message
srST_CMD_VAL Command payload sent by value
srAC_SYS_STRIDE Runtime system message

Response Description
srHostLoadDatabaseCmd_t Contains the database filename and path
szDatabase String containing name and path to database

Example

srHostLoadDatabaseCmd_t tLoadDatabase;

/* Set name of database to load */
strcpy(tLoadDatabase.szDatabase, “c:\Stride\myproj\mydatabase.xml”);

/* Send command to load database */
srSendCmd(mySTID,
 srBOX_1,
 srHOST_LOAD_DB_O_SMID,
 (srBYTE*)&tLoadDatabase,
 sizeof(srHostLoadDatabaseCmd_t));

STRIDE Runtime Developer’s Guide

130 Copyright © 2001 – 2010 S2 Technologies, Inc.

srHOST_LOAD_DB_STATUS_B_SMID
Receive host database status

The srHOST_LOAD_DB_STATUS_B_SMID message is used to receive the current
host database status. The status will indicate the name of a database and its load state.
This message is broadcast when the status changes.

Attributes Description
srMT_BCST Broadcast message
srST_RSP_VAL Response sent by value
srAC_SYS_STRIDE Runtime system message

Response Description
srHostLoadDBStatusRsp_t Database status information
szDatabase String containing name and path to database
eStatus srHOST_DB_STATUS_NOT_LOADED

srHOST_DB_STATUS_LOADED
srHOST_DB_STATUS_LOADING
srHOST_DB_STATUS_ERROR

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 131

Example

srHostLoadDBStatusRsp_t tLoadStatus;

srDWORD dwSMID;
srDWORD dwSize;

srSubscribe(mySTID,
 srBOX_2, /* Receive broadcast in Box 2 */
 srHOST_LOAD_DB_STATUS_B_SMID,
 srTRUE);

while(1)
{
 /* Wait for broadcast message */
 os_wait_event(MBOX2_EVENT);

 /* Read message (assume only status broadcast on Box 2) */
 srRead(mySTID, srBOX_2,
 sizeof(srHostLoadDBStatusRsp_t),
 &dwSMID,
 (srBYTE*)&tLoadStatus,
 &dwSize,
 &dwMsgInst);

 /* Make sure SMID is correct */
 if(dwSMID == srHOST_LOAD_DB_STATUS_T_SMID)
 {
 switch(tLoadStatus.eStatus)
 {
 case srHOST_DB_STATUS_NOT_LOADED:
 /* No Database Loaded */
 break;

 case srHOST_DB_STATUS_LOADED:
 /* Database is loaded */
 strcpy(szDatabaseLoadedString,
 tLoadStatus.szDatabase);
 break;

 case srHOST_DB_STATUS_LOADING:
 /* Database is still loading */
 break;

 case srHOST_DB_STATUS_ERROR:
 break;

 default:
 /* Handle Error */
 break;
 }
 }

STRIDE Runtime Developer’s Guide

132 Copyright © 2001 – 2010 S2 Technologies, Inc.

}

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 133

srHOST_LOAD_DB_STATUS_T_SMID
Query runtime for database status

The srHOST_LOAD_DB_O_SMID message is used to tell the Host Runtime to load a
STRIDE database file.

Attributes Description
srMT_TWO Two-way message
srST_RSP_VAL Response sent by value
srAC_SYS_STRIDE Runtime system message

Response Description
srHostLoadDBStatusRsp_t Database status information
szDatabase String containing name and path to database
eStatus srHOST_DB_STATUS_NOT_LOADED

srHOST_DB_STATUS_LOADED
srHOST_DB_STATUS_LOADING
srHOST_DB_STATUS_ERROR

STRIDE Runtime Developer’s Guide

134 Copyright © 2001 – 2010 S2 Technologies, Inc.

Example
srHostLoadDatabaseCmd_t tLoadDatabase;
srHostLoadDBStatusRsp_t tLoadStatus;
srDWORD dwSMID;
srDWORD dwSize;

/* Set name of database to load */
strcpy(tLoadDatabase.szDatabase, ”c:\Stride\myproj\mydatabase.xml”);

/* Send command to load database */
srSendCmd(mySTID, srBOX_1, srHOST_LOAD_DB_O_SMID,
 (srBYTE*)&tLoadDatabase,sizeof(srHostLoadDatabaseCmd_t));

/* Query the Current Status */
srSendCmd(mySTID, srBOX_2,
 srHOST_LOAD_DB_STATUS_T_SMID,
 srNULL, /* No Command Payload */
 0);

/* Wait for response to Two-Way message */
os_wait_event(MBOX2_EVENT);

/* Read response (assume only response to this command on Box 2) */
srRead(mySTID, srBOX_2,
 sizeof(srHostLoadDBStatusRsp_t),
 &dwSMID, (srBYTE*)&tLoadStatus,
 &dwSize, &dwMsgInst);

/* Make sure SMID is correct */
if(dwSMID == srHOST_LOAD_DB_STATUS_T_SMID)
{
 switch(tLoadStatus.eStatus)
 {
 case srHOST_DB_STATUS_NOT_LOADED:
 /* No Database Loaded */
 break;

 case srHOST_DB_STATUS_LOADED:
 /* Database is loaded */
 strcpy(szDatabaseLoadedString,
 tLoadStatus.szDatabase);
 break;

 case srHOST_DB_STATUS_LOADING:
 /* Database is still loading */
 break;

 case srHOST_DB_STATUS_ERROR:
 break;

 default:
 /* Handle Error */

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 135

 break;
 }
}

3.13. Trace Buffers

The following message is used to broadcast the current STRIDE trace buffer.

• srTRACE_BUFFER_B_SMID

srTRACE_BUFFER_B_SMID
Broadcast current trace buffer

The srTRACE_BUFFER_B_SMID message is used to broadcast the current trace buffer.
When the STRIDE Runtime tracing sub-system has a trace buffer available to send, users
subscribed to this message will receive that buffer. This can be used for tracing when a
host connection is not available and trace logs need to be saved for future viewing. The
trace buffers can then be sent back to the STRIDE Runtime using the
srTRACE_BUFFER_SEND_O_SMID command.

Attributes Description
srMT_BRD Broadcast message
srST_RSP_PTR Response payload sent by pointer
srPU_RSP_POL Response payload pointer uses pool memory
srAC_SYS STRIDE Runtime system message

Response Description
srTraceBufferRsp_t Contains the trace buffer
wTraceBufSize Indicates the size of the conformant array
TraceBuffer[1] Conformant array containing the trace buffer

Example

#include <sr.h> // contains prototypes and defines
#include <srmsg.h> // contains message definitions

srWORD wResult;
srDWORD dwMySMID;
srWORD wMsgSize;
srDWORD dwMsgInst;
srTraceBufferRsp_t ptTraceBuffer;

//assumes STID already created
wResult = srSubscribe(wMySTID, //Assumes valid STID
 srBOX_1, //Box to receive broadcast
 srTRACE_BUFFER_B_SMID, //ID of Trace Buffer Message
 srTRUE); //Enable subscription

CustomerWaitEvent(CUST_EVENT_MBOX1); // Wait for subsubscription

STRIDE Runtime Developer’s Guide

136 Copyright © 2001 – 2010 S2 Technologies, Inc.

...

//Read Broadcast Message
wResult = srRead(wMySTID,
 srBOX_1,
 sizeof(ptTraceBuffer), // reading a pointer
 &dwMySMID,
 &ptTraceBuffer,
 &wMsgSize,
 &dwMsgInst);

// Do something with the buffer (ptTraceBuffer->TraceBuffer[n])

CustomerFreeMemory(ptTraceBuffer);

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 137

3.13.1. Trace Filtering

The following message is used for configuring local filtering options related to the trace
buffer.

• srTRACE_FILTER_STID_O_SMID
Set up local STID tracing filters

The srTRACE_FILTER_STID_O_SMID command message is used to set up local filters
for STID tracing. A local application can set filter options for a particular STID. Options
include whether or not to include payload data, enabling/disabling MID (Message ID)
tracing, enabling/disabling STPID tracing, setting STPID logging level and globally
disabling message tracing for the specific STID.

Attributes Description
srMT_ONE One-way message
srST_CMD_VAL Command payload sent by value
srAC_SYS STRIDE Runtime system message

Command Description
srTraceFilterSTIDCmd_t Contains the STID filter
wSTID Unique STID identifier
bGlobalDisable Global disable any tracing for STID
bEnableMID Enable/disable MID tracing
bPayloadMID Enable/disable MID payloads
bEnableSTPID Enable/disable trace point tracing
bPayloadSTPID Enable/disable trace point payloads
eLevel Active level for trace points

STRIDE Runtime Developer’s Guide

138 Copyright © 2001 – 2010 S2 Technologies, Inc.

Example

#include <sr.h> // contains prototypes and defines
#include <srmsg.h> // contains message definitions

srTraceFilterSTIDCmd_t tTraceFilterSTIDCmd;
srWORD wGUIThreadSTID;
srWORD srResult;

// assuming “GUIThreadName” exists
srResult = srQueryName("GUIThreadName", &wGUIThreadSTID);

// Enable Message Tracing in UI Thread
tTraceFilterSTIDCmd.wSTID = wGUIThreadSTID;
tTraceFilterSTIDCmd.bGlobalDisable = srFALSE;
tTraceFilterSTIDCmd.bEnableMID = srTRUE;
tTraceFilterSTIDCmd.bPayloadMID = srTRUE;
tTraceFilterSTIDCmd.bEnableSTPID = srFALSE;
tTraceFilterSTIDCmd.bPayloadSTPID = srFALSE;
tTraceFilterThreadCmd.eLevel = srLEVEL_0

//assumes STID already created
wResult = srSendCmd(wMySTID,
 srBOX_1,
 srTRACE_FILTER_STID_O_SMID,
 (srBYTE*)&tTraceFilterSTIDCmd,
 sizeof(srTraceFilterSTIDCmd_t));

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 139

3.14. Subscriber Information

The following messages are used to receive subscriber information. One routine is for the
local subscribers and one for remote subscribers.

• srSUBSCRIBERS_LOCAL_B_SMID

• srSUBSCRIBERS_REMOTE_B_SMID

STRIDE Runtime Developer’s Guide

140 Copyright © 2001 – 2010 S2 Technologies, Inc.

srSUBSCRIBERS_LOCAL_B_SMID
Receive local subscriber information

The srSUBSCRIBERS_LOCAL_B_SMID message is used to receive local subscriber
information. Subscribers of this message will receive the subscribe information that the
Runtime receives on the local platform.

Attributes Description
srMT_BRD Broadcast message
srST_RSP_VAL Response payload sent by value
srAC_SYS STRIDE Runtime system message

Response Description
srRemoteSubRsp_t Contains the remote subscriber information
WSRID STRIDE Response Identifier
WSUID STRIDE Unique Identifier
BOn Indicates whether subscribe is on or off

Example

#include <sr.h> // contains prototypes and defines
#include <srmsg.h> // contains message definitions

srWORD wResult;
srDWORD dwMySMID;
srWORD wMsgSize;
srDWORD dwMsgInst;
srRemoteSubRsp_t tRemoteSub;

//assumes STID already created
wResult = srSubscribe(wMySTID, //Assumes valid STID
 srBOX_1, //Box to receive broadcast
 srSUBSCRIBERS_LOCAL_B_SMID, //ID of LocalSub msg
 srTRUE); //Enable subscription

CustomerWaitEvent(CUST_EVENT_MBOX1); // Wait for subsubscription
...

//Read Broadcast Message
wResult = srRead(wMySTID,
 srBOX_1,
 sizeof(tRemoteSub), // reading a pointer
 &dwMySMID,
 &tRemoteSub,
 &wMsgSize,
 &dwMsgInst);

// Do something with the sub info
AddSubToMySubList(tRemoteSub);

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 141

srSUBSCRIBERS_REMOTE_B_SMID
Receive remote subscriber information

The srSUBSCRIBERS_REMOTE_B_SMID message is used to receive remote
subscriber information. Subscribers of this message will receive the subscribe
information that the Runtime receives from the remote platform.

Attributes Description
srMT_BRD Broadcast message
srST_RSP_VAL Response payload sent by value
srAC_SYS STRIDE Runtime system message

Response Description
srRemoteSubRsp_t Contains the remote subscriber information
wSRID STRIDE Response Identifier
wSUID STRIDE Unique identifier
bOn Indicates the subscribe is on or off

Example

#include <sr.h> // contains prototypes and defines
#include <srmsg.h> // contains message definitions

rWORD wResult;
srDWORD dwMySMID;
srWORD wMsgSize;
srDWORD dwMsgInst;
srRemoteSubRsp_t tRemoteSub;

//assumes STID already created
wResult = srSubscribe(wMySTID, //Assumes valid STID
 srBOX_1, //Box to receive broadcast
 srSUBSCRIBERS_REMOTE_B_SMID, //ID of RemoteSub msg
 srTRUE); //Enable subscription

CustomerWaitEvent(CUST_EVENT_MBOX1); // Wait for subsubscription
...

//Read Broadcast Message
wResult = srRead(wMySTID,
 srBOX_1,
 sizeof(tRemoteSub), // reading a pointer
 &dwMySMID,
 &tRemoteSub,
 &wMsgSize,
 &dwMsgInst);

// Do something with the sub info
AddSubToMySubList(tRemoteSub);

STRIDE Runtime Developer’s Guide

142 Copyright © 2001 – 2010 S2 Technologies, Inc.

3.15. Marshaling Errors

The following message is used to receive remote subscriber information.

• srERROR_MARSHAL_B_SMID

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 143

srERROR_MARSHAL_B_SMID
Receive remote subscriber information

The srERROR_MARSHAL_B_SMID message is used to receive remote subscriber
information. Subscribers of this message will receive the subscribe information that the
Runtime receives from the remote platform.

Attributes Description
srMT_BRD Broadcast message
srST_RSP_VAL Response payload sent by value
srAC_SYS STRIDE Runtime system message

Response Description
srErrMarshalRsp_t Contains the marshaling error information
wCode Marshaling error code (for a list of marshalling error codes, refer

to sr.h on page 148).
bCmd Boolean flag to indicate direction:

srTRUE = Command
srFALSE = Response

dwSMID Message identifier
wRmtSRID STRIDE Response Identifier
bMarshalOut Direction of the marshalling error:

TRUE = outgoing marshalling error (target to host)
FALSE = incoming marshalling error (host to target)

Example

// Assume STID has been created
// Subscribe to marshaling error message
srSubscribe(wSTID, srBOX_1, srERROR_MARSHAL_B_SMID, srTRUE);

......

// Wait for message to be received
// Read message from input queue

wRet = _srCgUtil_Read(wSTID, srBOX_1, wMsgBuffSize, &dwSMIDRead,
 pyMsgBuff, &wMsgSize, pdwMsgInst);

......

if(dwSMIDRead==srERROR_MARSHAL_B_SMID)
{
 srErrMarshalRsp_t* marshalErr;
 marshalErr = (srErrMarshalRsp_t*)pyMsgBuff;
 // Error handling

}

STRIDE Runtime Developer’s Guide

144 Copyright © 2001 – 2010 S2 Technologies, Inc.

4. STRIDE Runtime Internals
The STRIDE Runtime is orgainzed with one main procedure that can be called from the
Runtime Thread (or any other thread) and a set of modules that are called out of the
contents of the caller.

4.1. STRIDE Runtime Thread and Procedure

The STRIDE Runtime Thread consists of an endless loop which waits on the palWait
routine and calls the STRIDE Runtime procedure when notified. The Runtime procedure
contains logic for maintaining the flow of trace buffers and reading received messages.
These messages control the sending and receiving of I-blocks, setting of tracing filters,
and other Runtime functions.

There are three main message loops. One is used for messages that will generate outgoing
I-blocks. These messages are not read until the I-block Ready signal has been set. This is
useful for allowing control of the transmission of I-blocks. The second message loop
handles the rest of the messages that the Runtime procedure receives. The third message
loop is used for receiving fragmented I-blocks. Once the first fragment of an I-block is
received the remaining fragments are collected in the same message loop.

4.2. STRIDE Runtime Modules

The STRIDE Runtime is organized into nine funtional modules. Each module is
organized as a set of files with a common file name prefix. Modules do not share memory
directly. Functions that are used outside of a file are exported by the use of a module
header file. These module header files only contain the information that is shared outside
the file.

Module Description File Prefix
Connection Routines srconn
Error Routines srerr
I-block Routines srib
Memory Management Routines srmem
Message Routines srmsg
STID Routines srstid
SUID Routines srsuid
Test Services srtest
Thread Routines srthread
Timer Routines srtime

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 145

Any interface exported through the module header file (either a function prototype,
define or structure) will contain and underscore and the filename as the first characters of
the name. The rest of the name will be descriptive of the function or define.

STRIDE Runtime Developer’s Guide

146 Copyright © 2001 – 2010 S2 Technologies, Inc.

4.3. STRIDE Runtime Files

Below is a list of the STRIDE Runtime files provided in the STRIDE ITE.

File Description
sr.h Public STRIDE prototypes and defines
srapi.c Public API source code
srapirgl.c Regional API source code
srapirgl.h Regional API prototypes and defines
srcfg.h STRIDE configuration file
srcgutil.c Code generation utility routines
srcgutil.h Code generation utility prototypes and defines
srconn.c Connection source code
srconn.h Connection prototypes and defines
srerr.c Error reporting source code
srerr.h Error reporting prototypes and defines
srib.c Main I-block source code
srib.h Main I-block prototyes and defines
sribctrl.c Control I-block source code
sribctrl.h Control I-block prototypes and defines
sribmsg.c Message I-block source code
sribmsg.h Message I-block prototypes and defines
sribrpt.c Report I-block source code
sribrpt.h Report I-block prototypes and defines
sribtr.c Trace I-block routines
sribtr.h Trace I-block prototypes and defines
srmem.c Memory management source code
srmem.h Memory management prototypes and defines
srmsg.h STRIDE Runtime message interface defines
srmsgbox.c Message Box source code
srmsgbox.h Message Box prototypes and defines
srmsgmar.c Message Marshaling source code
srmsgmar.h Message Marshaling prototypes and defines
srmsgptr.c Pointer module source code
srmsgptr.h Pointer module prototypes and defines
srmsgque.c Message Queueing source code
srmsgque.h Message Queueing prototypes and defines
srmsgrt.c Message Routing source code
srmsgrt.h Message Routing prototypes and defines
srmsgsub.c Message Subscribing source code
srmsgsub.h Message Subscribing prototypes and defines
srstid.c STID source code

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 147

srstid.h STID prototypes and defines
srsuid.c SUID source code
srsuid.h SUID prototypes and defines
srthread.c Runtime Thread source code
srthread.h Runtime Thread source code prototypes and defines
srtime.c Timer source code
srtime.h Timer prototypes and defines
srtp.h Trace Point defines
srtest.h Runtime Test Services (RTS) C APIs and C++ base class (Optional)
srtest.c Runtime Test Services (RTS) C APIs source code (Optional)
srtestpp.cpp Runtime Test Services (RTS) C++ base class source code (Optional)
srtestutil.c Runtime Test Services (RTS) utility routines (Optional)
srtestutil.h Runtime Test Services (RTS) utility prototypes and defines (Optional)

148

Appendix A: STRIDE Runtime API (sr.h)
/**
 *
 * FILE NAME: sr.h
 *
 * DESCRIPTION:
 * STRIDE Runtime (SR) public API prototypes, structures and defines.
 *
 * --
 * Copyright 2001 - 2008 by S2 Technologies, Inc.
 * --
 ***/

#ifndef SR_H
#define SR_H

#include "pal.h"

#if (defined(__WIN32__) || defined(_WIN32)) && !defined(STRIDE_STATIC)

ifdef STRIDE_EXPORTS
define srEXPORT __declspec(dllexport)
else
define srEXPORT __declspec(dllimport)
endif

#else

define srEXPORT

#endif

#ifdef __cplusplus
extern "C" {
#endif

/**
 *
 * Runtime Primitive Types
 *
 ***/

typedef palCHAR srCHAR;
typedef palBYTE srBYTE;
typedef palSHORT srSHORT;
typedef palWORD srWORD;
typedef palLONG srLONG;
typedef palDWORD srDWORD;
typedef palBOOL srBOOL;

#define srTRUE palTRUE
#define srFALSE palFALSE
#define srNULL palNULL

/**
 *
 * SMID Attributes
 *
 ***/

/* Message Types (MT) */
#define srMT_ONE_CMD 0x00000000
#define srMT_ONE_RSP 0x01000000
#define srMT_TWO 0x02000000
#define srMT_BRD 0x03000000

/* Abbreviations MT */

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 149

#define srMT_ONE srMT_ONE_CMD
#define srMT_ONEc srMT_ONE_CMD
#define srMT_ONEr srMT_ONE_RSP

/* Send Type for Command (ST_CMD) */
#define srST_CMD_PTR 0x00000000
#define srST_CMD_VAL 0x04000000
#define srST_CMD_NOP 0x00000000 /* Deprecated */

/* Send Type for Response (ST_RSP) */
#define srST_RSP_PTR 0x00000000
#define srST_RSP_VAL 0x08000000
#define srST_RSP_NOP 0x00000000 /* Deprecated */

/* Pointer Usage for Command (PU_CMD) */
#define srPU_CMD_POL 0x00000000
#define srPU_CMD_PRI 0x10000000

/* Pointer Usage for Response (PU_RSP) */
#define srPU_RSP_POL 0x00000000
#define srPU_RSP_PRI 0x20000000

/* Access Class (AC) */
#define srAC_MSG 0x00000000
#define srAC_FUNCTION 0x40000000
#define srAC_SYS 0x80000000

/**
 *
 * Runtime API Return codes
 *
 ***/

#define srOK 0
#define srERR 1
#define srERR_PAL_MEM_ALLOC 2
#define srERR_PAL_NOTIFY_SYS 3
#define srERR_PAL_NOTIFY_USER 4
#define srERR_PAL_OUT 5
#define srERR_SMID_ATTR 6
#define srERR_SUID_RANGE 7
#define srERR_STID_INVALID 8
#define srERR_STID_INACTIVE 9
#define srERR_STID_ALLOC 10
#define srERR_STID_MAX 11
#define srERR_STID_USED 12
#define srERR_QUEUE_FULL 13
#define srERR_QUEUE_EMPTY 14
#define srERR_PTR_INVALID 15
#define srERR_PTR_ALLOC 16
#define srERR_PTR_TEARDOWN 17
#define srERR_PTR_DUPLICATE 18
#define srERR_PTR_LOCKED 19
#define srERR_PTR_POOL 20
#define srERR_PTR_OVERWRITE 21
#define srERR_PTR_ADDRESS 22
#define srERR_PTR_OFFSET 23
#define srERR_PTR_MSG_DIR 24
#define srERR_PTR_DIR 25
#define srERR_PTR_USAGE 26
#define srERR_PTR_SIZE 27
#define srERR_REG_SET 28
#define srERR_REG_OVERRIDE_SET 29
#define srERR_REG_STORAGE_FULL 30
#define srERR_REG_NONE 31
#define srERR_SUB_ALLOC 32
#define srERR_SUB_NONE 33
#define srERR_RMT_FAIL 34
#define srERR_SEND_PRIV 35
#define srERR_READ_SIZE 36

STRIDE Runtime Developer’s Guide

150 Copyright © 2001 – 2010 S2 Technologies, Inc.

#define srERR_TRACE_TYPE 37
#define srERR_MAP_STATUS 38
#define srERR_MAP_FAIL 39
#define srERR_RT_INITIALIZE_NONE 40
#define srERR_LAST_CODE 41

/**
 *
 * STRIDE Runtime API Enums and defines
 *
 **/

/* Mail Box Ids */
typedef enum
{
 srBOX_1 = 0,
 srBOX_2 = 1,
 srBOX_3 = 2,
 srBOX_4 = 3,
 srBOX_5 = 4,
 srBOX_6 = 5,
 srBOX_7 = 6,
 srBOX_8 = 7
} srBOX_e;

#define srBOX_MAX 8

/* TracePoint Levels */
typedef enum
{
 srLEVEL_0 = 0,
 srLEVEL_1 = 1,
 srLEVEL_2 = 2,
 srLEVEL_3 = 3,
 srLEVEL_4 = 4,
 srLEVEL_5 = 5,
 srLEVEL_6 = 6,
 srLEVEL_7 = 7
} srLevel_e;

/* Embedded Pointer Msg Direction */
typedef enum
{
 srMSGDIR_COMMAND = 0,
 srMSGDIR_RESPONSE = 1
} srMsgDir_e;

/* Embedded Pointer Direction */
typedef enum
{
 srPTRDIR_IN = 0,
 srPTRDIR_OUT = 1,
 srPTRDIR_INOUT = 2,
 srPTRDIR_RET = 3
} srPtrDir_e;

#define srPTRDIR_CMD_IN srPTRDIR_IN
#define srPTRDIR_CMD_OUT srPTRDIR_OUT
#define srPTRDIR_CMD_INOUT srPTRDIR_INOUT
#define srPTRDIR_CMD_RET srPTRDIR_RET
#define srPTRDIR_RSP_RET srPTRDIR_RET

/* Embedded Pointer Usage */
typedef enum
{
 srPTR_USAGE_PRIVATE = 0,

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 151

 srPTR_USAGE_POOL = 1
} srPtrUsage_e;

/* Trace Type */
typedef enum
{
 srTRACE_SEND_CMD = 0,
 srTRACE_READ_CMD = 1,
 srTRACE_SEND_RSP = 2,
 srTRACE_READ_RSP = 3,
 srTRACE_SEND_BCAST = 4,
 srTRACE_READ_BCAST = 5,
 srTRACE_CALL = 6,
 srTRACE_RETURN = 7
} srTraceType_e;

/* Access Class Registration */
typedef enum
{
 srAC_REG_MESSAGES = 0,
 srAC_REG_FUNCTIONS = 1
} srAccessClass_e;

/* pointer setup offset macros */
#define srPTR_OFFSET(Base, Offset) ((srWORD)((srDWORD)&Base.Offset -
(srDWORD)&Base))
#define srPTR_OFFSET_BYREF(Base, Offset) ((srWORD)((srDWORD)&Base->Offset -
(srDWORD)Base))

/* pointer setup handle is empty */
#define srPTR_EMPTY 0x0FFF

/* used by trace interface to indicate empty pointer instance */
#define srPTR_INST_EMPTY 0x0FFF0000

/* srCreateSTID NID - indicates that NID is not used */
#define srNID_NONE palNID_RESERVED_0

/* NOTE: STID==0 is for private runtime use only */
#define srSTID_RESERVED 0

/* max size of any trace string */
#define srTRACE_STR_MAX 255

/* pool memory managment prototypes */
typedef void* (*srPoolMemAlloc_t)(srWORD wSize);
typedef void (*srPoolMemFree_t)(void* pvMem);

/**
 *
 * STRIDE Runtime API Structures
 *
 **/

/* Query SMID Info */
typedef struct
{
 srBOOL bReg;
 srBYTE yRegSTID;
 srBOX_e eRegBox;
 srBOOL bRegOverride;

STRIDE Runtime Developer’s Guide

152 Copyright © 2001 – 2010 S2 Technologies, Inc.

 srWORD wSubIdsCnt;
} srSMIDInfo_t;

/* Query Box Info */
typedef struct
{
 srDWORD dwNextSMID;
 srWORD wNumPending;
 srWORD wSizeOfNextSMID;
} srBoxInfo_t;

/* Function Double */
typedef void (*srFunctionDouble_t)(void);

/**
 *
 * Setup & Shutdown API
 *
 **/

/**
 * Initialize the STRIDE Runtime. This should be called once per process, at startup.
 * @return srOK on success, stride error code otherwise
 */
srEXPORT srWORD srInit(void);

/**
 * Uninitialize the STRIDE Runtime. This should be called only once per process, at
shutdown.
 * @return srOK on success, stride error code otherwise
 */
srEXPORT srWORD srUninit(void);

srEXPORT srWORD srCreateSTID(srDWORD dwNID,
 const srCHAR* szName,
 srWORD* pwSTID,
 srBOOL bNew);

srEXPORT srWORD srDeleteSTID(srWORD wSTID);

/**
 *
 * Messaging API
 *
 **/

srEXPORT srWORD srRegister(srWORD wSTID,
 srBOX_e eBox,
 srDWORD dwSMID,
 srBOOL bOn);

srEXPORT srWORD srRead(srWORD wSTID,
 srBOX_e eBox,
 srWORD wMaxRead,
 srDWORD* pdwSMID,
 srBYTE* pyBuffer,
 srWORD* pwSize,
 srDWORD* pdwMsgInst);

srEXPORT srWORD srReadComplete(srWORD wSTID,
 srDWORD dwMsgInst);

srEXPORT srWORD srSendCmd(srWORD wSTID,
 srBOX_e eRspBox,
 srDWORD dwSMID,
 srBYTE* pyPayload,
 srWORD wSize);

srEXPORT srWORD srSendRsp(srWORD wSTID,

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 153

 srDWORD dwMsgInst,
 srDWORD dwSMID,
 srBYTE* pyPayload,
 srWORD wSize);

srEXPORT srWORD srBroadcast(srWORD wSTID,
 srDWORD dwSMID,
 srBYTE* pyPayload,
 srWORD wSize);

srEXPORT srWORD srSubscribe(srWORD wSTID,
 srBOX_e eBox,
 srDWORD dwSMID,
 srBOOL bOn);

srEXPORT srWORD srSetAuxData(srWORD wSTID,
 srDWORD dwAuxData);

srEXPORT srWORD srGetAuxData(srWORD wSTID,
 srDWORD* pdwAuxData);

/**
 *
 * Pointer API
 *
 **/

srEXPORT srWORD srPtrSetup(srWORD wSTID,
 srDWORD dwSMID,
 srWORD wOffset,
 srWORD* pwOffsetTable,
 srWORD wSize,
 srMsgDir_e eMsgDir,
 srPtrDir_e ePtrDir,
 srPtrUsage_e ePtrUsage,
 srWORD* pwHandle);

srEXPORT srWORD srPtrSetupChild(srWORD wSTID,
 srWORD wParentHandle,
 srWORD wOffset,
 srWORD wSize,
 srPtrDir_e ePtrDir,
 srPtrUsage_e ePtrUsage,
 srWORD* pwHandle);

srEXPORT srWORD srPtrTearDown(srWORD wSTID,
 srDWORD dwSMID,
 srWORD wHandle);

srEXPORT srWORD srPtrGetHandle(srWORD wSTID,
 srDWORD dwMsgInst,
 srBYTE* pyMemory,
 srWORD* pwHandle);

srEXPORT srWORD srPtrSize(srWORD wSTID,
 srWORD wHandle,
 srWORD wSize);

srEXPORT srWORD srPtrCreateCmdInst(srWORD wSTID,
 srDWORD dwSMID,
 srBYTE* pyPayload,
 srWORD wSize,
 srDWORD* pdwCmdInst);

srEXPORT srWORD srPtrCreateRspInst(srWORD wSTID,
 srDWORD dwSMID,
 srBYTE* pyPayload,
 srWORD wSize,
 srDWORD dwCmdInst,
 srDWORD* pdwRspInst);

STRIDE Runtime Developer’s Guide

154 Copyright © 2001 – 2010 S2 Technologies, Inc.

srEXPORT srWORD srPtrDeleteInst(srWORD wSTID,
 srDWORD dwPtrInst);

/**
 *
 * Tracing API
 *
 **/

srEXPORT srWORD srTracePoint(srWORD wSTID,
 srDWORD dwTPID,
 srBYTE* pyPayload,
 srWORD wSize,
 srLevel_e eLevel);

srEXPORT srWORD srTraceStr(srWORD wSTID,
 const srCHAR* szString,
 srLevel_e eLevel);

srEXPORT srWORD srTraceInterface(srWORD wSTID,
 srDWORD dwSUID,
 srBYTE* pyPayload,
 srWORD wSize,
 srDWORD dwPtrInst,
 srTraceType_e eTraceType);

/**
 *
 * Printing API
 *
 **/

srEXPORT srWORD srPrintInfo(const srCHAR * szMsg, ...);

srEXPORT srWORD srPrintError(const srCHAR * szMsg, ...);

/**
 *
 * Query API
 *
 **/

srEXPORT srWORD srQueryNID(srDWORD dwNID,
 srWORD* pwSTID);

srEXPORT srWORD srQueryName(const srCHAR* szName,
 srWORD* pwSTID);

srEXPORT srWORD srQuerySMID(srDWORD dwSMID,
 srSMIDInfo_t* ptSMIDInfo);

srEXPORT srWORD srQueryBox(srWORD wSTID,
 srBOX_e eBox,
 srBoxInfo_t* ptBoxInfo);

srEXPORT srWORD srQuerySTID(srDWORD* pdwNID,
 srWORD wSTID);

srEXPORT srWORD srQueryAccessClass(srAccessClass_e eAC,
 srWORD* pwSTID,
 srBOX_e* peBox);

/**
 *
 * Remote Message Stub/Proxy API
 *
 **/

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 155

/* Deprecated in favor of srRegisterAccessClass() */
srEXPORT srWORD srSetRMS(srWORD wSTID,
 srBOX_e eBox);

srEXPORT srWORD srRegisterAccessClass(srAccessClass_e eAC,
 srWORD wSTID,
 srBOX_e eBox,
 srBOOL bOn);

/**
 *
 * Runtime Thread Entry / Exit Points
 *
 **/

srEXPORT void srThread(void* param);
srEXPORT void srThreadInit(void);
srEXPORT void srThreadUninit(void);
srEXPORT srBOOL srThreadProc(void);

/**
 *
 * Transport API
 *
 **/

typedef srBOOL (*srRmtRouteOutCallback_t)(const srBYTE *pyBuffer, srWORD wSize);

srEXPORT srRmtRouteOutCallback_t srRmtRouteOutReg(srRmtRouteOutCallback_t ptFuncCb);

/**
 *
 * Host Specific Runtime Routines
 *
 **/

#ifdef srHOST
srEXPORT void srHostIMPoolMemOverride(srPoolMemAlloc_t pfMemAlloc,
 srPoolMemFree_t pfMemFree);
#endif /* srHOST */

/**
*
* Function Double Routines
*
**/

srEXPORT srBOOL _srGetFnDbl(const srCHAR* szName, srFunctionDouble_t* ptFnDbl);
#define srDOUBLE_GET(fn, pfnDbl) _srGetFnDbl(#fn, (srFunctionDouble_t*)pfnDbl)

srEXPORT srBOOL _srSetFnDbl(const srCHAR* szName, srFunctionDouble_t tFnDbl);
#define srDOUBLE_SET(fn, fnDbl) _srSetFnDbl(#fn, (srFunctionDouble_t)fnDbl)

srEXPORT srBOOL _srRegFnDbl(const srCHAR* szName, srFunctionDouble_t* ptFnDblRef);

#ifdef __cplusplus
}
#endif

/**
*
 *
 * C/C++ features support
 *

STRIDE Runtime Developer’s Guide

156 Copyright © 2001 – 2010 S2 Technologies, Inc.

/

#if !defined(srCRT_HAS_WCHAR_T)
#define srCRT_HAS_WCHAR_T 1 /* wchar_t defined (1=enabled, 0=disabled)*/
#endif

#if !defined(srCRT_HAS_LONG_LONG)
#define srCRT_HAS_LONG_LONG 1 /* long long defined (1=enabled, 0=disabled)*/
#endif

#if !defined(srCRT_HAS_LONG_DBL)
#define srCRT_HAS_LONG_DBL 1 /* long double defined (1=enabled, 0=disabled)*/
#endif

#if !defined(srCRT_HAS_VAR_ARGS)
#define srCRT_HAS_VAR_ARGS 1 /* variable arguments (1=enabled, 0=disabled)*/
#endif

#ifdef __cplusplus

#if !defined(srCPP_HAS_NAMESPACE)
#define srCPP_HAS_NAMESPACE 1 /* C++ namespaces (1=enabled, 0=disabled)*/
#endif

#if srCPP_HAS_NAMESPACE
define srCPP_NAMESPACE_BEGIN(name) namespace name {
define srCPP_NAMESPACE_END }
define srCPP_NAMESPACE_USE(name) using namespace name;
define srCPP_NAMESPACE_QUALIFIER(name) name::
#else
define srCPP_NAMESPACE_BEGIN(name)
define srCPP_NAMESPACE_END
define srCPP_NAMESPACE_USE(name)
define srCPP_NAMESPACE_QUALIFIER(name)
#endif

#endif /* __cplusplus */

#endif /* SR_H */

157

Appendix B: STRIDE Runtime Configuration (srcfg.h)
/**
 *
 * FILE NAME: srcfg.h
 *
 * DESCRIPTION:
 * STRIDE Runtime configuration defines.
 *
 * --
 * Copyright 2001 - 2008 by S2 Technologies, Inc.
 * --
 ***/

#ifndef SRCFG_H
#define SRCFG_H

/**
 *
 * Messaging
 *
 ***/

#define srCFG_TOTAL_STIDS 8 /* number of STRIDE Transact IDs in system */
#define srCFG_TOTAL_SUBCS 32 /* total number of subscribers at one time */
#define srCFG_TOTAL_PTRS 256 /* total number of pointer entries */

#define srCFG_SUID_TABLE_TYPE 1 /* 1 = Search based, 0 = Index based */
#define srCFG_SUID_TABLE_SIZE 32 /* number of SUID Table entries */
#define srCFG_SUID_OVERRIDE 1 /* override (1 = enabled, 0 = disabled) */
#define srCFG_SUID_OVERRIDE_STORAGE 0 /* override registration storage allocation*/

#define srCFG_TOTAL_SUIDS_QUED 128 /* total number of SUIDS queued at one time*/
#define srCFG_STID_NAME_SIZE 15 /* max size of a STRIDE Transact ID name */

/**
 *
 * Tracing
 *
 ***/

#define srCFG_TRACING_ENABLED 1 /* tracing enabled (1=enabled, 0=disabled)*/
#define srCFG_TOTAL_TRACING_MEMORY 1024 /* number of bytes allocated for tracing */
#define srCFG_TRACEBUFFER_MAX_SIZE 1000 /* max size of a single trace buffer */
#define srCFG_TRACEBUFFER_WAKEUP_TIME 100 /* number of milliseconds between sending */

/**
 *
 * Time Stamp
 *
 ***/

#define srCFG_TIMESTAMP_UNITS 1 /* 0 = microsecs, 1 = Millisecs, 2 = secs */
#define srCFG_TIMESTAMP_DURATION 1 /* number of TimeStamp Units per Tick */

/**
 *
 * Auxiliary Data
 *
 ***/
#define srCFG_AUXDATA 0 /* Use Auxiliary Data (1=Yes, 0=No) */

/**

158 Copyright © 2001 – 2010 S2 Technologies, Inc.

 *
 * Transport Settings
 *
 ***/
#define srCFG_MAX_TRANSPORT_UNIT 2048 /* 0=No Fragmentation, Number=Fragment Size*/
#define srCFG_DEFAULT_TRANSPORT_STATE 1 /* 1=Transport Ready, 0=Transport Not Ready*/

/**
 *
 * Connection Settings
 *
 ***/

#define srCFG_CONNECTION_TIMEOUT 5000 /*connection timeout (1=enabled,0=disabled)*/

/**
 *
 * RFC (Remote Function Call) Settings
 *
 ***/
#define srCFG_RFC_ENABLED 1 /* RFC enabled (1=Yes, 0=No) */
#define srCFG_RFC_PMM 1 /* RFC pool memory management */
 /* - (0=None, 1=Recovery, 2=Reallocation)*/
#define srCFG_RFC_PAL_PMM 0 /* PAL pool memory management (1=Yes, 0=No)*/

/**
 *
 * Test Settings
 *
 ***/

#define srCFG_MAX_UNIQUE_TEST_POINT 256 /* max number of simultaneously (un)expected
 unique test points */

/**
 *
 * Memory Management Settings
 *
 ***/
#define srCFG_MEMORY_MANAGEMENT 0 /*memory management (1=enabled, 0=disabled)*/

/* if memory management is enabled, set block size and max limits for dynamic and */
/* configurable memory */
#if srCFG_MEMORY_MANAGEMENT
#define srCFG_MEMORY_BLOCK_SIZE_SMALL 30 /* size of a small memory block */
#define srCFG_MEMORY_BLOCK_SIZE_MEDIUM 100 /* size of a medium memory block */
#define srCFG_MEMORY_BLOCK_SIZE_LARGE 500 /* size of a large memory block */
#define srCFG_MEMORY_BLOCK_SIZE_LARGE2 1000 /* size of a large2 memory block */
#define srCFG_MEMORY_BLOCK_SIZE_LARGE3 10000 /* size of a large3 memory block */
#define srCFG_MEMORY_BLOCK_SIZE_HUGE 0xFFFF /* size of a huge memory block */

#define srCFG_MEMORY_BLOCK_MAX_SMALL 5000 /* max number of small memory blocks */
#define srCFG_MEMORY_BLOCK_MAX_MEDIUM 250 /* max number of medium memory blocks */
#define srCFG_MEMORY_BLOCK_MAX_LARGE 250 /* max number of large memory blocks */
#define srCFG_MEMORY_BLOCK_MAX_LARGE2 100 /* max number of large2 memory blocks */
#define srCFG_MEMORY_BLOCK_MAX_LARGE3 50 /* max number of large3 memory blocks */
#define srCFG_MEMORY_BLOCK_MAX_HUGE 50 /* max number of huge memory blocks */
#endif /* srCFG_MEMORY_MANAGEMENT */

/**
 *
 * Multi-Process Settings
 *
 ***/
#define srCFG_MULTI_PROC_TARGET 0 /*multi-process target (1=enabled,0=disabled)*/

#if srCFG_MULTI_PROC_TARGET && !srCFG_MEMORY_MANAGEMENT
#error "Multi-process target requires memory management."

STRIDE Runtime Developer’s Guide

 Copyright © 2001 – 2010 S2 Technologies, Inc. 159

#endif

/**
 *
 * Debug Settings
 *
 ***/

#define srCFG_ERROR_CHECK_LEVEL 2 /* levels(0,1,2), none(0) */

#endif /* SRCFG_H */

	About this Guide
	Purpose
	Document Conventions
	Standard Data Types
	Standard Defines
	Hungarian Notation for Variables
	Naming Conventions
	Terms
	Related Documents

	1. Using the STRIDE Runtime
	1.1. Overview
	1.1.1. STRIDE Message ID (SMID)
	1.1.2. STRIDE Unique ID (SUID)
	1.1.3. STRIDE Transactor ID (STID)
	1.1.4. STRIDE Trace Point ID (STPID)
	1.1.5. STRIDE Response ID (SRID)
	1.1.6. Notification of Traffic ID (NID)

	1.2. Memory Requirements
	1.2.1. Messaging Memory
	1.2.2. Tracing Memory
	1.2.3. Transport Settings
	1.2.4. Memory Management
	1.2.5. Multi-Process Target

	1.3. Using the API
	1.3.1. Creating an STID
	1.3.2. Creating a STRIDE Message
	1.3.2.1. The One-way Message
	1.3.2.2. The STRIDE Two-way Message
	1.3.2.3. The STRIDE Broadcast Message

	1.3.3. Registering Messages
	1.3.4. Overriding Registration
	1.3.5. Subscribing to Messages
	1.3.6. Reading and Sending Messages
	1.3.6.1. Send Type by Value
	1.3.6.2. Send Type by Pointer

	1.3.7. Using Pointers
	1.3.8. Returning Message Memory
	1.3.9. Pointer Memory Policies
	1.3.10. Trace Points
	1.3.11. Data Format Conformance

	1.4. Routing with Access Class Registration
	1.4.1. Remote Messaging (RM) Overview
	1.4.2. Access Class Intercept Module
	1.4.2.1. Access Class IM Setup
	1.4.2.2. How It Works

	1.5. Connecting to the Host
	1.5.1. Connection Settings

	2. Remote Messaging (RM)
	2.1. Implementing a Remote Messaging Service
	2.1.1. How It Works
	2.1.2. Issues to Consider
	Allocated STRIDE Resources
	SUID Value Organization
	Broadcasting
	Subscriber Lists
	Notification
	Response Messages
	Pointer Usage
	Tracing

	2.1.3. Translating between STRIDE and Native Message IDs

	2.2. Using a Remote Message Stub (RMS)
	2.2.1. Remote Message Stub Thread Setup
	2.2.2. Remote Message Stub Thread Messages
	2.2.3. How to Handle Responses
	2.2.4. Binding Native Commands with Native Responses
	2.2.5. Wait Event
	2.2.6. Subscriptions and Broadcasts
	2.2.6.1. How Subscribers are Stored
	2.2.6.2. Broadcasting

	2.2.7. Pointers
	2.2.8. Message Tracing
	2.2.9. Remote Message Stub Thread Example

	2.3. Using a Remote Message Proxy (RMP)
	2.3.1. Remote Message Proxy Routing
	2.3.2. Binding Native Commands with Native Responses
	2.3.3. Receiving STRIDE Responses – Sending Native Responses

	3. Runtime API Services
	3.1. Setup and Shutdown
	srInit()
	Prototype
	Description

	srUninit()
	Prototype
	Description

	srCreateSTID()
	Prototype
	Description

	srDeleteSTID()
	Prototype
	Description

	3.2. Messaging
	srRegister()
	Prototype
	Description

	srRegisterAccessClass()
	Prototype
	Description

	srRead()
	Prototype
	Description

	srReadComplete()
	Prototype
	Description

	srSendCmd()
	Prototype
	Description

	srSendRsp()
	Prototype
	Description

	srBroadcast()
	Prototype
	Description

	srSubscribe()
	Prototype
	Description

	srSetAuxData()
	Prototype
	Description

	srGetAuxData()
	Prototype
	Description

	3.3. Pointers
	srPtrSetup()
	Prototype
	Description

	srPtrSetupChild()
	Prototype
	Description

	srPtrTeardown()
	Prototype
	Description

	srPtrGetHandle()
	Prototype
	Description

	srPtrSize()
	Prototype
	Description

	srPtrCreateCmdInst()
	Prototype
	Description

	srPtrCreateRspInst()
	Prototype
	Description

	srPtrDeleteInst()
	Prototype
	Description

	3.4. Tracing
	srTracePoint()
	Prototype
	Description

	srTraceStr()
	Prototype
	Description

	srTraceInterface()
	Prototype
	Description

	3.5. Printing
	srPrintInfo()
	Prototype
	Description

	srPrintError()
	Prototype
	Description

	3.6. Query
	srQueryAccessClass()
	Prototype
	Description

	srQueryNID()
	Prototype
	Description

	srQueryName()
	Prototype
	Description

	srQuerySMID()
	Prototype
	Description

	srQueryBox()
	Prototype
	Description

	3.7. Access Class (Remote Messaging) Routines
	3.8. I-block
	srIBlockOutReady()
	Prototype
	Description

	3.9. Runtime Thread Entry and Exit Points
	srThread()
	Prototype
	Description

	srThreadInit()
	Prototype
	Description

	srThreadUninit()
	Prototype
	Description

	srThreadProc()
	Prototype
	Description

	3.10. Host Override Routines
	srHostShutdownIM()
	Prototype
	Description

	3.11. Connecting
	srCONNECT_OPEN_T_SMID
	See Also

	srCONNECT_CLOSE_T_SMID
	srCONNECT_STATUS_B_SMID
	srCONNECT_STATUS_T_SMID

	3.12. Database Loading Routines
	srHOST_LOAD_DB_O_SMID
	srHOST_LOAD_DB_STATUS_B_SMID
	srHOST_LOAD_DB_STATUS_T_SMID

	3.13. Trace Buffers
	srTRACE_BUFFER_B_SMID
	3.13.1. Trace Filtering

	3.14. Subscriber Information
	srSUBSCRIBERS_LOCAL_B_SMID
	srSUBSCRIBERS_REMOTE_B_SMID

	3.15. Marshaling Errors
	srERROR_MARSHAL_B_SMID

	STRIDE Runtime Internals
	4.1. STRIDE Runtime Thread and Procedure
	4.2. STRIDE Runtime Modules
	4.3. STRIDE Runtime Files

	Appendix A: STRIDE Runtime API (sr.h)

