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1 Introduction 

The STRIDE Communication Language, or SCL, is an Interface Definition Language 
(IDL) used by the STRIDE Communication Model (SCM) to identify and define 
messages, function calls, and trace points within an application. Interfaces are identified 
and annotated in order to expose enough information about them so that they can be 
marshaled across platform boundaries. The implementation code of a defined interface 
must adhere to the contract defined in SCL. This document describes, in detail, the 
syntax and semantics of this contract.  

The SCL is a superset of the ANSI C language. SCL extensions to the C language are a 
set of pragmas that allow interface semantics to be more precisely prescribed than the C 
Language allows.    

• Message-based interfaces require unique identification of the message, definition 
of the sender/receiver relationship, and description of the data (if any) that is part 
of the message payload.  

• Functional interfaces require unique identification of the function and a 
description of the parameters and return values.  

• Trace points require unique identification of the tracepoint, assignment of a 
name, and description of the optional associated data.  

SCL is a superset of the ANSI C Standard (ISO/IEC 9899:1999). Primarily, the 
extensions consist of new pragma directives.  This section formally describes the SCL 
Pragmas. The context for this description is the ANSI C Standard (ISO/IEC 9899:1999). 
Many terms used within this document have meaning as defined by the standard.  

An SCL Compliant compiler automatically defines the symbol “_SCL.” 

1.1 Notation and Definitions 

1.1.1 Syntax 

We borrow the notation used to describe the language syntax from the ANSI C Standard.  
Syntactic categories (nonterminals) are indicated by italic type, and literal words and 
character set members (terminals) by bold type. A colon (:) following a nonterminal 
introduces its definition. Alternative definitions are listed on separate lines.   

When syntactic categories are referred to in the main text, they are not italicized and 
words are separated by spaces instead of hyphens.  

1.2 Concepts 
The SCL Pragmas are designed to allow annotation of C language constructs in such a 
way as to identify and define trace points, messages and function calls so that they can be 
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transparently intercepted and remoted.  Some pragmas are necessary because C language 
constructs lack important interface details.  Other pragmas are necessary because they 
allow STRIDE to do a better job of representing information to the user or because they 
allow STRIDE to take advantage of increased opportunities for efficiency. Finally, some 
exist simply to make it easier for users to adopt STRIDE without changing existing 
source code.  

Pragmas are used to elaborate all of the following areas:  

• The set of messages and functions within the application that are candidates for 
interception and remoting.  

• Use of pointers. Pointer-related ambiguities include memory ownership, data 
directions, and pointers that point to a sequence of elements rather than a single 
element.  

• The convention of using null-terminated strings in C. When a pointer is declared 
as “char *” it must be further elaborated as pointing to a single character or a 
series of characters ending in NULL.  

• Pointers to functions. Functions whose addresses are passed as parameters must 
be identified.  

• Pointers to data which should be treated by STRIDE as “void*” rather than its 
declared type. This may be necessary because of self-referential data structures 
or simply because of efficiency concerns.  

• Unions. The discriminant (if any) must be identified; the relationship between 
active union members and discriminant values must be prescribed.  

• Convenience pragmas to constrain the allowable values of a data item. 
• Convenience pragmas to allow STRIDE to treat a data item as if it was defined to 

be of another type.  
• Pragmas to allow STRIDE to identify certain structures (e.g., v-tables) used in C 

programs to simulate C++ inheritance and virtual function mechanisms.  
• The STRIDE-defined constructs known as trace points.  
• The special construct known as conformant arrays (aka variable length arrays).  

1.2.1 Remotable Functions and Messages (Interfaces) 

SCL includes pragmas used to identify messages or functions that may be remoted. Only 
messages or functions identified with these pragmas are remotable candidates. These 
remotable candidates are also referred to as interfaces. Almost all other pragmas operate 
on, or depend upon, the set of interfaces identified as remotable.  

By far, the most important aspect of a remotable interface is the memory layout of the 
data that is passed from message sender or function caller. Most pragmas allow the data 
format to be described in detail. Throughout this document, the data exchanged for a 
given instance of a message or function is referred to as the payload.  
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Since STRIDE represents communication via both messaging and function calls, we 
introduce two terms to generically identify the sender/receiver of a message or the 
caller/callee of function.  These terms are user and owner. Within a message, the user is 
the agent sending the message and owner is the agent that receives the message. Within a 
function call, the user is the caller and the owner is the callee.  

1.2.1.1 Payloads 
The data passed between user and owner is referred to as a payload. Not all messages or 
functions contain a payload. Consider the function  

 void f(void);  

This function has no return value and no parameters, thus no payload.  

Message Payloads 

Message payloads are defined by a C datatype. For example, we may have message 
ERROR that has an associated structure containing the error code and a string. The 
relevant C Language declarations might be:  

#define ERROR_MSG  23  // the message id for ERRROR 
 
// The structure for the message data. 
typedef struct _ErrorMessagePayload  
{ 
   int        errorCode;  
   char[100]  text; 
} ErrorMessagePayload;  
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Message payloads are typically passed by reference (but can also be passed by value). 
Assuming the message payload above is passed by reference we can depict the memory 
layout of the entire message payload as: 

 

 

Note that in this instance, the payload actually consists of two distinct memory blocks – a 
pointer and the structure pointed to. The distinct blocks in a payload are referred to as the 
payload memory blocks. Note also that the blocks form a tree structure with each 
contiguous memory block representing a node in the tree. This illustrates a more general 
concept, that the payload blocks form a network and that network must be a tree (i.e., it 
starts with a node designated as the root and all other nodes are reachable from the root 
and there can be no cycles) 

Within a two-way message, the structure of data passed in each direction may be 
different. For this reason, payloads must be further characterized according to whether 
they are passed from user to owner or owner to user. Payloads passed from user to owner 
are called Command Payloads. Payloads passed from owner to user are called Response 
Payloads.  

Function Payloads 

Functions are much like two-way messages, data can be passed from user (caller) to the 
owner (callee) at the time of the call, and the owner (callee) may pass data back to the 
caller (user) at the time of the return. As with message payloads, the data passed from 
user to owner is referred to as the Command Payload and the data passed from owner to 
user is referred to as the Response Payload.  

Command Payloads are constructed from the formal parameters of a function. Response 
Payloads are constructed from the return value of a function (certain details of the 
response payload are omitted in this discussion but taken up later).  

6 Copyright © 2001 – 2008 S2 Technologies, Inc. 



STRIDE Communication Language Reference  

The Command Payload for a function is a synthesized C structure. The members of the 
structure correspond to the formal parameters of the function (both the order and types of 
the members exactly correspond).  

The Response Payload for a function corresponds to the return value. Below is the 
depiction of the Command and Response Payload memory layout for a simple function 
Error():  

 
// The structure for the message data. 
typedef struct _ErrorMessagePayload  
{ 
   int        errorCode;  
   char[100]  text; 
} ErrorMessagePayload;  
 
int Error(ErrorMessagePayload *pPayload, BOOL bPopupMessage);  

 

 

1.2.2 Messages 

1.2.2.1 STRIDE Message ID (SMID)  
The SMID is a unique message ID and a set of attributes associated with the message. 
The SCM defines the SUID portion as the low order 24 bits of the SMID (bits 0 thru 23), 
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allowing unique identifiers between zero and 224-1. The attributes are stored in bits 24 
thru 29. Bits 30 and 31 are reserved and must be set to 0 for all user-defined SMIDs. 
Each SCL-compliant message must be assigned a unique message ID. 

SMID Attributes 

 

 

The Message Type (MT) attribute defines the type of message being used for 
communication between the Owner and User. The following values are used for different 
message types: 

Message Type (Mt) Values 
Meaning Value 
One-way  
(CMD) 

0 

One-way 
(RSP) 

1 

Two-way 
(TWO) 

2 

Broadcast 
(BRD) 

3 

 

The Send Type (ST) attribute is used to indicate how to transmit the payload. There are 
two ways to send the payload: by value or by pointer. The following tables describe the 
ST attribute settings: 

Send Type for Command (STc) Attributes 
Meaning Value 
By Pointer 
(combined 
with  NULL 
data value 
means no 
payload) 

0 

By Value 
(VAL) 

1 

 

8 Copyright © 2001 – 2008 S2 Technologies, Inc. 
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Send Type for Response (STr) Attributes 
Meaning Value 
By Pointer 
(combined 
with  NULL 
data value 
means no 
payload) 

0 

By Value 
(VAL) 

1 

 

When a payload is passed by pointer, a Pointer Usage (PU) attribute is required. 
Otherwise the value of the PU is ignored. The PU attribute indicates if the payload is 
using pool memory or private memory. When the PU attribute indicates pool, the SCM 
requires that the memory be allocated from a common pool. When the PU attribute 
indicates private, the STRIDE Runtime environment makes no assumptions on how the 
payload memory is being managed between the Owner and User when they are executing 
on the same target platform. If the payload crosses platform boundaries, however, the 
Runtime is required to dynamically allocate memory from the common pool. The 
temporary memory that is allocated is used to hold the payload, and the address of the 
memory is passed to the reader. Once the reader returns the message memory to the 
Runtime, the temporary memory is automatically freed. The original memory from the 
sender is not affected or synchronized with the other platform.  

The PU attributes are listed below: 

Pointer Usage for Command (PUc) Attribute 
Meaning Value 
Pool (POL) 0 
Private 
(PRI) 

1 

 

Pointer Usage for Response (PUr) Attribute 
Meaning Value 
Pool 
(POL)) 

0 

Private 
(PRI) 

1 
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The two highest order bits of the SMID are reserved. .  

These attributes, along with the 24 bit SUID are all packed into the STRIDE Message ID 
(SMID) as illustrated below: 

 

In all user-constructed SMIDs the Rsvd bits are required to be 0.  

1.2.2.2 STRIDE Unique ID (SUID) 
The SUID is composed of the low order, 24-bit value found in a SMID. The SUID is 
unique across the space of messages and functions. In this way, it is possible to uniquely 
identify a message or function simply by knowing its SUID.   

1.2.3 Pointers within Payloads 

Without exception, every pointer that is part of a payload must have several defining 
attributes:  

• Pointer Data Directional Attributes 
• Memory Ownership Attributes 
• Pointed to Element Count 

1.2.3.1 Pointer Data Directional Attributes 
The table below defines the allowed directional attributes and their meanings.  

Pointer Data Directional Attributes 

Values Meaning 

IN When a pointer is tagged with the IN directional attribute it means that it 
points to a block of memory that must be allocated and assigned values by 
the user. When an owner receives a pointer that is tagged with the IN 
directional attribute, the owner can assume that it points to a block of 
memory with values as set up by the user.   

A block of memory pointed to by an IN pointer is said to be an IN block.  

Any changes an owner makes to values within an IN block will never be 
reflected back to the user.  

OUT When a pointer is tagged with the OUT directional attribute it means that it 
points to a block of memory allocated by the user, but whose values are 
setup by the owner.  

A block of memory pointer to by an OUT pointer is said to be an OUT 
10 Copyright © 2001 – 2008 S2 Technologies, Inc. 
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Values Meaning 
block.  

When a user allocates an OUT block, the user need not define or setup any 
particular initial values. When such a block is received by an owner, the 
owner must assume that all memory within the block is not initialized and 
holds undefined values.  

The owner is obligated to write to the OUT block to setup all relevant data 
values. All values set up by the owner within an OUT block will be reflected 
back to the user.  

 
INOUT When a pointer is tagged with the INOUT directional attribute, it means that 

it points to a block of memory that must be allocated by the user, and is 
expected to be assigned values by both the user and owner.  

A block of memory pointed to by an INOUT pointer is said to be an INOUT 
block.  

The user for the INOUT block is obligated to setup initial values within the 
block. All values within the block will be reflected to the owner.  

The owner for an INOUT block can assume that all data values setup by the 
user are reflected in the block received. If the owner makes any changes to 
the data within the INOUT block the values will be reflected back to the 
user.  

RETURN When a pointer is tagged with the RETURN directional attribute it means 
that the owner is responsible for the allocation of the block, the setup of its 
initial values and communication of the pointer value back to the user.   

A block of memory pointed to by a RETURN pointer is referred to as a 
RETURN block.  

When a pointer is tagged with the RETURN attribute, both the value of the 
pointer and the pointed to block of memory are set up by the owner. Both are 
communicated back to the user at the return of the function call.  

At the time of a return the user will receive both the value of the RETURN 
pointer and the block pointed to. The block will have values as setup by the 
owner.  

INRETURN When a pointer is tagged with the INRETURN directional attributes it means 
that value of the pointer and the value of the pointed to block are setup by 
both user and owner.  

There is no single block of memory pointed to by an INRETURN pointer. 
Rather there is one block on the call (or message send) and a second block 
on the return (or completion of the two-way message). Thus the first block 
has the characteristics of an IN block and the second the characteristics of a 
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Values Meaning 
RETURN block.  

A pointer tagged with INRETURN must point to a block allocated and setup 
with initial values by the user. All values setup by the user will be reflected 
to the owner upon receipt of the call or message. The owner receiving such a 
pointer may do any of the following: 

• Change neither the pointer nor the values of the pointed to block. In 
this case the user will receive exactly the values setup for the call or 
message send.   

• Change values within the pointed to block. In this case, the user will 
receive the same pointer value sent, but the values within the pointed 
to block will change according to the owner changes.  

• Change the values of the pointer (i.e., allocate another block) and set 
up values within the new block. The user will receive both the new 
value for the pointer and pointed to block  

 

1.2.3.2 Memory Ownership Attributes 
In addition to directional attributes, all pointers also must have memory ownership 
attributes. The allowable attributes are shown below.  

Pointer Memory Ownership Attributes 

Values Meaning 

PRIVATE Ownership/management responsibility of the memory to which 
the pointer points belongs to the allocating agent. Depending on 
the directional attribute of the pointer the allocating agent may be 
either the user or owner. The pointed to memory may be either 
global, automatic or heap based since ownership is solely the 
responsibility of the allocator. 

POOL Ownership/management responsibility of the memory to which 
the pointer points is transferred along with the pointer. The 
receiving agent is responsible for de-allocation of the memory to 
which the pointer points. For this reason, pool memory must be 
dynamically allocated and cannot be static or automatic. The 
receiving agent can be either owner or user depending up on the 
directional attributes of the pointer. Pool memory ownership 
further implies the existence of a centralized “Pool” of memory to 
which both owner and user have access and a set of common 
allocation/deallocation routines. 
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1.2.3.3 Allowed Combinations of Memory Ownership and Directional Attributes 
Not all directional attribute values or memory ownership attributes are possible for every 
pointer. Some directional attributes may be applied only to a pointer residing in a block 
with certain attributes. And some memory ownership attributes are prohibited for some 
directional attribute values.   

Directional Attributes Allowed  

Pointer Attribute Allowable Memory 
Usage Attributes 

 

IN PRIVATE or POOL  
OUT PRIVATE  POOL is not allowed for an OUT pointer 

because memory ownership cannot be 
transferred. 

INOUT PRIVATE  POOL is not allowed for an INOUT 
pointer because memory ownership 
cannot be transferred.  

RETURN PRIVATE or POOL  
INRETURN PRIVATE or POOL  
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Directional Attributes Allowed  

Block Type in 
Which Pointer 
Resides 

Allowable Pointer 
Attributes 

Allowable Memory 
Usage Attributes 

IN IN PRIVATE or POOL 
OUT RETURN PRIVATE or POOL 
INOUT IN PRIVATE or POOL 
 OUT PRIVATE  
 INOUT PRIVATE 
 RETURN PRIVATE or POOL 
 INRETURN PRIVATE or POOL 
RETURN RETURN PRIVATE or POOL 
INRETURN IN PRIVATE or POOL 
 RETURN PRIVATE or POOL 
 INRETURN PRIVATE or POOL 
 

Special Cases 

All top levels pointers (i.e., pointers which reside in the root block of a command 
payload) have allowable pointer attributes as IN, OUT or INOUT.  

All blocks in a response payload must be RETURN. Response payloads include: 

• The return value of a function 
• The response payload of a two-way message 
• The payload of a one-way response message 
• The payload of a broadcast message 
 

If the return value of a function is a pointer, then that pointer must have the RETURN 
pointer attribute, either implicitly or explicitly. It can have either POOL or PRIVATE 
memory usage.  

1.2.3.4 Sized pointers  
The C language allows a pointer to point to a series of elements, rather than a single 
element. As a result, it is not clear how many elements a pointer declared as “T *” points 
to. However, this is an important detail of a payload.  A pointer must be characterized as 
pointing to a single element or a series of elements. Those pointing to a series of 
elements are called “sized pointers.” Sized pointers are broken down into two additional 
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subtypes: Those which point to a fixed sized series and those who point to a series whose 
length is characterized by another field referred to as the count field. The pragmas 
scl_ptr() and scl_sized_ptr() allow these characterizations. 

Sized Pointer Memory Allocation Policies 

In most cases, a block of memory pointed to is of known, fixed size. This is typically the 
case for pointers that point to a single element. However, this is generally not the case for 
sized pointers. Sized pointers point to a series of elements, and sometimes have an 
associated field whose value indicates the current element count. In some cases, it is not 
clear if memory is available for elements beyond the current count. Conventions must be 
adopted in order to clarify the user and owner memory management responsibilities. The 
conventions specify the required sizes of allocated blocks and responsibility for initial 
values.  

Memory Conventions for Fixed Size Sized Pointer Pointing to Max Elements 

Pointer Directional 
Attribute 

User 
Obligations 
for Pointer 

Setup 

Owner 
Assumption 
for Received 

Pointer 

Owner 
Obligation 

For Returned 
Pointer 

User 
Assumption 

For Receipt of 
Returned 
Pointer 

IN BlockSize Max Max n/a n/a 
 ElemCount Max Max n/a n/a 
OUT BlockSize Max Max Max Max 
 ElemCount 0 0 Max Max 
INOUT BlockSize Max Max Max Max 
 ElemCount Max Max Max Max 
INRETURN BlockSize Max Max Max Max 
 ElemCount Max Max Max Max 
RETURN BlockSize n/a n/a Max Max 
 ElemCount n/a n/a Max Max 
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 Memory Conventions for Sized Pointer with Associated Size Field residing in IN 
block.  

Pointer Directional 
Attribute 

User 
Obligations 
for Pointer 

Setup 

Owner 
Assumption 
for Received 

Pointer 

Owner 
Obligation 

For Returned 
Pointer 

User 
Assumption 

For Receipt of 
Returned 
Pointer 

IN BlockSize Countin Countin n/a n/a 
 ElemCount Countin Countin n/a n/a 
OUT BlockSize Countin Countin Countin Countin 
 ElemCount 0 0 Countin Countin 
INOUT BlockSize Countin Countin Countin Countin 
 ElemCount Countin Countin Countin Countin 
INRETURN BlockSize Countin Countin Countin Countin 
 ElemCount Countin Countin Countin Countin 
RETURN BlockSize n/a n/a Countin Countin 
 ElemCount n/a n/a Countin Countin 
Countin denotes the value of the sized field at the time the user called the owner 
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Memory Conventions for Sized Pointer with Associated Size Field residing in OUT 
or RETURN block.  

Pointer Directional 
Attribute 

User 
Obligations 
for Pointer 

Setup 

Owner 
Assumption 
for Received 

Pointer 

Owner 
Obligation 

For Returned 
Pointer 

User 
Assumption 

For Receipt of 
Returned 
Pointer 

IN BlockSize Prohibited Prohibited Prohibited Prohibited 
 ElemCount in SCL in SCL in SCL in SCL 
OUT1

 

BlockSize Max Max Reduced2  Max  
 ElemCount 0 0 Countout Countout 
INOUT BlockSize Prohibited  Prohibited Prohibited Prohibited 
 ElemCount in SCL in SCL in SCL in SCL 
INRETURN BlockSize Prohibited Prohibited Prohibited Prohibited 
 ElemCount in SCL in SCL in SCL in SCL 
RETURN BlockSize n/a n/a Countout Countout 
 ElemCount n/a n/a Countout Countout 
 

                                                 
1 Under certain conditions, the User and Owner obligations and assumptions indicated by this row can be 
relaxed.  A cooperating User and Owner may privately agree to a convention consisting of a Max size 
block that is less than that called for in the scl_sized_ptr() pragma.  In other words, the user may safely 
allocate less than Max for the OUT block, if there is a private agreement between user and owner that 
owner will never return more than Countout max elements.  This special case is supported by Stride Host 
components.   

2  Reduced means all Stride components which act as owners will inform the host runtime when the 
Countout  is less than the Max. This allows the host runtime to then marshall only Countout back to user 
from owner.  (If the Stride components did not take this action, then Max would be marshalled back) This 
reduction of OUT going payload by owner is not required by the interface contract. Rather, it is an optional 
efficiency provided by Stride Components acting as owners. Other components (those created by the 
embedded developer) acting as owner do not have to perform this convenience.  In addition, this reduction 
of an OUT block payload does not change the udnerlying size of the OUT block allocated by the User. It 
only affects the fraction of the block written to when the ower returns the OUT block results. When the 
owner reduces the outgoing block, the bytes beyond the reduction threshold will not be written upon the 
return from owner. It is this Stride host component behavior that enables co-operating Users and Owners to 
implement the “private” maxsize agreement described in the previous footnote.   
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Memory Conventions for Sized Pointer with Associated Size Field residing in 
INOUT or INRETURN block.  

Pointer Directional 
Attribute 

User 
Obligations 
for Pointer 

Setup 

Owner 
Assumption 
for Received 

Pointer 

Owner 
Obligation 

For Returned 
Pointer 

User 
Assumption 

For Receipt of 
Returned 
Pointer 

IN BlockSize Countin Countin n/a n/a 
 ElemCount Countin Countin n/a n/a 
OUT3

 

BlockSize Max Max Reduced Max 
 ElemCount 0 0 Countout Countout 
INOUT BlockSize Max Max Reduced Max 
 ElemCount Countin Countin Countout Countout 
INRETURN BlockSize Countin  Countin Countout Countout 
 ElemCount Countin Countin Countout Countout 
RETURN BlockSize n/a n/a Countout Countout 
 ElemCount n/a n/a Countout Countout 
 

1.2.3.5 Default Directional and Memory Usage Attributes 
In the absence of any pragma, all pointer directional attributes (and pointer types) default 
to IN/PRIVATE except for pointers in response payloads. Response payloads include the 
return value of a function, or the response payload of a two-way comand, a one-way 
respose, or a broadcast message type. Pointers in response payloads default to 
RETURN/PRIVATE. These defaults can be overridden by an explicit pragma applied to 
the pointer or its type symbol. The defaults can also be overridden by application of 
explicit directional attributes to some ancestor pointer. The rules for overriding the 
defaults are prescribed below.   

Assume we have a pointer p. When a pragma is applied to p, it may have an effect on the 
directional attributes of some downstream pointers (downstream pointers are pointer 
instances located within any block that p could point to directly or indirectly).  The effect 
is to all downstream pointers along any path from p up to, but not including, the first 
pointer that has had an explicit pragma applied and that pragma identifies a set of 
instances that are contained within the set that p may point to. We call these descendents 
of p the “default descendents.” The effects are as follows: 

• When p is designated as IN, there are no changes to the default descendents.  
• When p is designated as OUT, all default descendents change to RETURN.  
• When p is designated as INOUT, all default descendents change to INOUT.  

                                                 
3 This row allows the same special user convention of a privately agreed to Countout max as the table above 
entitled “Memory Conventions for Sized Pointer with Associated Size Field residing in OUT or 
RETURN.” 
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• When p is designated as RETURN, all default descendents change to RETURN.  
• When p is designated as INRETURN, all default descendents change to 

INRETURN. 
• The default memory attribute PRIVATE of a pointer never changes.  

 

The following section shows various SCL examples that illustrate the use of the default 
rules. Each example has two forms. The original the and equivalent with explicit 
pragmas.  

Example 1 

Original (Valid) Explicit Equivalent 

void f(int **p);  
#pragma scl_function(f) 
 

void f(int **p);  
#pragma scl_function(f) 
#pragma scl_ptr(f.p, IN, PRIVATE) 
#pragma scl_ptr(*f.p, IN, PRIVATE) 
 

 

Example 1a 

Original (Valid) Explicit Equivalent 

void f(int **p);  
#pragma scl_function(f) 
#pragma scl_ptr(f.p, RETURN, PRIVATE) 
 

void f(int **p);  
scl_function(f) 
#pragma scl_ptr(f.p, RETURN, PRIVATE) 
#pragma scl_ptr(*f.p, RETURN, PRIVATE) 
 

The designation of RETURN for p changes the downstream defaults.  

Example 1b 

Original (Invalid) Explicit Equivalent 

void f(int **p);  
#pragma scl_function(f) 
#pragma scl_ptr(*f.p, RETURN, PRIVATE) 
 

void f(int **p);  
scl_function(f) 
#pragma scl_ptr(f.p, IN, PRIVATE) 
#pragma scl_ptr(*f.p, RETURN, PRIVATE) 
 
 

The designation of RETURN for *f.p is incorrect because the parent, f.p, is IN by default 
rules.  

Example 2 

Original (Invalid) Explicit Equivalent 

typedef struct { int *p;} S;  
#pragma scl_ptr(S.p, RETURN, PRIVATE) 
void f(S* ps);  

typedef struct { int *p;} S;  
void f(S* ps);  
#pragma scl_function(f) 
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#pragma scl_function(f) 
 

#pragma scl_ptr(f.ps, IN, PRIVATE) 
#pragma scl_ptr(f.ps->p, RETURN, PRIVATE)  
 

The scl_ptr pragma applies to all fields p within objects of type S. Thus, it eliminates the 
default rules for S.p. S.p is always RETURN unless another pragma is used to override 
(which is not the case for this example).  

Example 2a 

Original (Valid) Explicit Equivalent 

typedef struct { int *p;} S;  
#pragma scl_ptr(S.p, RETURN, PRIVATE)  
void f(S* ps);  
#pragma scl_function(f) 
#pragma scl_ptr(f.ps, OUT, PRIVATE) 
 

typedef struct { int *p;} S;  
void f(S* ps);  
#pragma scl_function(f);  
#pragma scl_ptr(f.ps, OUT, PRIVATE)  
#pragma scl_ptr(f.ps->p, RETURN, PRIVATE) 
 

The scl_ptr pragma applies to all fields p within objects of type S. Thus, it eliminates the 
default rules for S.p. S.p is always RETURN unless another pragma is used to override 
(which is the case for this example).  

 

Example 3 

Original (Valid) Explicit Equivalent 

typedef struct S1 {int *pi;} S1;  
typedef struct S2 {S1* ps1;} S2;  
typedef struct S3 {S1* ps1_2; } S3;  
#pragma scl_ptr(S3.ps1_2, INOUT, PRIVATE) 
#pragma scl_ptr(S3.ps1_2->pi, OUT, PRIVATE) 
void g(S2* gps2);  
void h(S3* hps3);  
#pragma scl_function(g) 
#pragma scl_function(h) 
#pragma scl_ptr(h.hps3, INOUT, PRIVATE);  

typedef struct S1 {int *pi;} S1;  
typedef struct S2 {S1* ps1;} S2;  
typedef struct S3 {S1* ps1_2; } S3;  
void g(S2* gps2);  
void h(S3* hps3);  
#pragma scl_function(g) 
#pragma scl_ptr(g.gps2, IN, PRIVATE) 
#pragma scl_ptr(g.gps2->ps1, IN, PRIVATE) 
#pragma scl_ptr(g.gps2->ps1->pi, IN, 
PRIVATE) 
#pragma scl_function(h)  
#pragma scl_ptr(h.hps3, INOUT, PRIVATE) 
#pragma scl_ptr(h.hps3->ps1_2, INOUT, 
PRIVATE) 
#pragma scl_ptr(h.hps3->ps1_2->pi, OUT, 
PRIVATE) 
 

Illustrates the use of a pragma for S3.ps1_2->pi, that does not change the default of S1.pi.  

Example 4 

Original (Invalid) Explicit Equivalent 

typedef struct S1 {int *pi;} S1;  
#pragma scl_ptr(S1.pi, IN, PRIVATE) 
S1 f(void);  
#pragma function(f)  

typedef struct S1 {int *pi;} S1;  
S1 f(void);  
#pragma function(f) 
#pragma scl_ptr(f().pi, IN, PRIVATE) 

scl_ptr() is applies to every pi within any S1, thus effectively eliminating the default for 
S1.pi.  Subsequently, this is invalid SCL because f1().pi must be RETURN.  
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Example 4a 

Original (Valid) Explicit Equivalent 

typedef struct S1 {int *pi;} S1;  
#pragma scl_ptr(S1.pi, IN, PRIVATE) 
S1 f(void);  
#pragma function(f)  
#pragma scl_ptr(f().pi, RETURN, PRIVATE);  

same 

scl_ptr() is applies to every pi within any S1, thus effectively eliminating the default for 
S1.pi.  However, the pragma applied to f().pi is more specific and thus overrides it.  

Example 5 

Original (Valid) Explicit Equivalent 

typedef struct S1 {int *pi;} S1;  
typedef S1* S1_PTR;  
#pragma scl_ptr(S1_PTR, INOUT, PRIVATE) 
void f(S1_PTR p);   
#pragma function(f) 
 
  

typedef struct S1 {int *pi;} S1;  
typedef S1* S1_PTR;  
void f(S1_PTR p);   
#pragma function(f) 
#pragma scl_ptr(f.p, INOUT, PRIVATE) 
 

scl_ptr() is applied directly to a type name.  

Conventions for Count Fields 

Given a payload that contains a sized pointer (i.e., a pointer with an associated size field), 
it is possible that the agent setting up such a payload will assign a value to the count field 
that is out of range. An out-of-range value is one that is either less than 0 or greater than 
the prescribed maximum size (in the pragma).  

There is one more special case of an out-of-range count field. It is possible that a count 
field resides in a block that is distinct from the block in which the sized pointer resides. 
Furthermore, it is possible that the pointer to the count field’s block is null. Since there is 
no count value, this is defined to be an out-of-range condition and treated as such.  

When the count field is out of range in a payload, the effect is TBD. 

1.2.3.6 Restriction: Outpointers in Two-way message command payloads 
The command payload of a two-way message may not have any ptr that is qualified as 
OUT, INOUT (and therefore RETURN and INRETURN well).  

1.2.4 Pointers to Functions (Callbacks) 

When a payload contains a field that is a pointer to a function, it is possible that that 
receiver of such a payload may make a call using the value received. Because the set of 
possible functions that might be passed is very large, and because all remotable methods 
must be identified with a SUID, it is a requirement that each such payload value be 
constrained to identify the specific set of functions that might be passed. Two pragmas 
are used for making these associations: scl_fptr_named() and scl_fptr_anonymous().  
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Payload fields that are of type pointer to function that are not explicitly associated with a 
list of candidates are treated as if they have been declared as void *.  

 

1.2.5 Unions 

Unions are C language constructs that have a set of members, of which at most one can 
be stored in the union object at any time. This is called the “active” member.  For each 
union that is part of a payload, there must be a means to determine which member is 
active. There are two basic methods for identification of the active member: 

• One union member is designated as always active. The union will be treated as if 
this member is permanently active, there is no discriminant, nor any way to 
change the active member.  

• A secondary field is designated as the discriminant and its value determines 
which (if any) of the union members are active.  

1.2.5.1 Discriminants 
Unions within the source code are easily identified by the “union” keyword. 
Discriminants are not easy to identify, the scl_union() pragma is necessary to identify 
them. The scl_union_activate() pragma is optionally used to define a mapping between 
discriminant values and union members. The details of both scl_union() and 
scl_union_activate() are found in later sections.  

Within a discriminated union, the discriminant value determines the active member of the 
union. Thus, there is a mapping between discriminant values and union members. A 
number of mapping choices are supported.  

• In the simplest mapping, a discriminant value of n directly identifies the nth union 
member as active. In other words, a value of 0 would indicate the first union 
member, a value of 1 the second, etc.  

• If the discriminant is an enumerated type, then it is possible to set up an 
association between enumeration constants and active members such that the nth 
enumeration constant (in declared order, not value order) maps to the nth union 
member.  

• It is also possible to create an explicit map between discriminant value sets and 
active members by specifying that a particular value or set of values maps to a 
specific member.  

The following constraints are enforced for the mapping between discriminant values and 
union members 

• A particular discriminant value may map only to a single union member.  
• A particular field may act as a discriminant for more than one union 
• A single union may only have a single discriminant field 
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• The type of the discriminant field must be an integer or enumerated type or must 
have been cast (using scl_cast()) to an integer or enumerated type.  

• scl_values() applied to the discriminant field affects the default mapping between 
discriminant values and union members.  

Default Mapping 

As mentioned previously, the scl_union() pragma is used to identify the discriminant for 
a union and scl_union_activate() is used to map discriminant values to union members.  
If there are no scl_union_activate() pragmas for a particular discriminated union, then the 
mapping between the discriminant and members is said to be default. The default 
mapping depends on the type of the discriminant:  

• If the discriminant is one of the standard integer types, or has been cast to one of 
the standard integer types using scl_cast(), then the value of the discriminant 
identifies the position of the active member. That is, a value of 0 indicates that the 
first union member, a value of 1 the second, etc.  

• If the discriminant is an enumerated type or has been cast to an enumerated type, 
or has had a set of constant values prescribed using scl_values() then each 
constant has both a value and a position within the list. It is the  position, rather 
than the value, that identifies the active member. When the discriminant takes on 
the value of the constant from position n, the nth union member is active. In the 
case the two constants from the same list have the same value (but different 
positions), an error is recognized.  

Explicit Mappings 

A union that has at least one scl_union_activate() pragma applied to it is said to have an 
explicit mapping. When a union has an explicit mapping there is no default mapping, 
rather all mapping between discriminant values and union members is prescribed by the 
set of scl_union_activate() pragmas for the unions. The details of scl_union_activate() are 
found in later sections.  

Internal and External Discriminants 

A union’s discriminant is either internal or external. A union has an external discriminant 
if the discriminant field is not contained within the union.  

An internal discriminant is one that is located inside the union. If a union has an internal 
discriminant the following must be true for the union to behave properly when marshaled 
across platform boundaries.  

• Every member of the union must have a field that corresponds to the internal 
discriminant. All such fields must be of exactly the same type or had exactly the 
same scl_cast() or scl_values() specifications applied. Furthermore, all such fields 
must be positioned in exactly the same memory location within the union.  If they 
are located in a payload block other than the one containing the union, then the 
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expression “path” leading to  each must be the same in the sense that all 
corresponding pointers across all the members have exactly the same offsets. 

 
The SCL language translator will verify that the above conditions are met.  

Conventions for “out of range” discriminant values 

Given a mapping between discriminant values and union members, it is sometimes 
possible that certain discriminant values have no corresponding active member. In this 
case, the discriminant value is said to be out of range. For a union with an out of range 
external discriminant, the receiver of such a payload must assume that the contents of the 
union are undefined since there was no active member.   

The receiver of a payload containing a union with an internal discriminant that is out of 
range must assume that the contents of the union are undefined with one exception: the 
discriminant, which will contain the out of range value to allow the receiver to determine 
that no union member is active.  

There is one more special case of out of range discriminant. It is possible that a 
discriminant resides in a block that is distinct from the block in which the union resides. 
Furthermore, it is possible that the pointer to the discriminant’s block is null. Since there 
is no discriminant value, this is defined to be an out of range condition and treated as 
such.  

When the discriminant is an internal discriminant, the receiver of such a payload can 
assume that the values of the pointers along the path leading up to the discriminant are 
valid, at least up to the pointer that is null. This makes it possible for the receiver to 
successfully test for the out of range condition caused by the absence of the block in 
which the discriminant resides.  
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1.2.5.2 Unions Containing Pointers 
Union members may contain pointers. There are no additional restrictions for pointers 
contained within unions that have a fixed active member. However, pointers within a 
discriminated union must meet certain additional conditions.  These conditions are 
related to both the direction of the block in which the union resides, and the block in 
which the discriminant resides.  These conditions allow both user and owner to 
successfully interpret the memory layout of payloads. The conditions are prescribed 
below: 

Discriminated Union residing in an IN block 

Block Attribute 
in which 

Discriminant 
Resides 

Allowable 
Attributes For 
Pointers that 
are Members 

Located within 
the Union 

Block Explanation 
IN IN,OUT, 

INOUT (OUT 
and INOUT 
only possible if 
the union 
resides in the 
root block) 

Owner cannot modify active 
member so all possible attributes are 
allowed.  

OUT n/a Combination prohibited since 
discriminant will be treated as out of 
range when union is passed from 
user to owner.  

INOUT IN OUT/INOUT members not allowed 
since they do not make sense if 
owner changes active member. 

RETURN n/a Combination prohibited since 
discriminant will be treated as out of 
range when union is passed from 
user to owner. 

INRETURN IN OUT/INOUT members not allowed 
since they do not make sense if 
owner changes active member.  
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Discriminated Union residing in an INOUT block  

Allowable 
Block Attribute 

in which 
Discriminant 

Resides 

Allowable 
Attributes For 
Pointers that 
are Members 

Located within 
the Union 

Block Explanation 
IN IN, 

OUT, 
INOUT, 
RETURN, 
INRETURN 

Owner cannot modify active 
member so all possible attributes 
are allowed. 

OUT n/a Combination prohibited since 
discriminant will be treated as out 
of range when union is passed from 
user to owner.  

INOUT INRETURN, 
RETURN 

IN, OUT, INOUT members not 
allowed since they do not make 
sense if owner changes active 
member 

RETURN n/a Combination prohibited since 
discriminant will be treated as out 
of range when union is passed from 
user to owner.  

INRETURN INRETURN, 
RETURN 

IN, OUT, INOUT members not 
allowed since they do not make 
sense if owner changes active 
member. 

 

Discriminated Union residing in an OUT or RETURN block 

Allowable 
Block Attribute 

in which 
Discriminant 

Resides 

Allowable 
Attributes For 
Pointers that 
are Members 

Located within 
the Union 

Block Explanation 
IN RETURN Descendents of OUT or RETURN 

block can only be RETURN 
INOUT RETURN Same as above 
OUT RETURN Same as above 
INRETURN RETURN Same as above 
RETURN RETURN Same as above 
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Discriminated Union residing in an INRETURN block 

Allowable 
Block Attribute 

in which 
Discriminant 

Resides 

Allowable 
Attributes For 
Pointers that 
are Members 

Located within 
the Union 

Block Explanation 
IN IN 

RETURN, 
INRETURN 

Owner cannot modify active 
member so all possible attributes 
(consistent with descendents of 
INRETURN) are allowed.  

OUT n/a Combination prohibited since 
discriminant will be treated as out 
of range when union is passed from 
user to owner. 

INOUT RETURN 
INRETURN 

IN members not allowed since they 
do not make sense if owner changes 
active member. 

RETURN  Combination prohibited since 
discriminant will be treated as out 
of range when union is passed from 
user to owner. 

INRETURN RETURN 
INRETURN 

IN members not allowed since they 
do not make sense if owner changes 
active member. 

 

If a union does not contain any pointers then there is no restriction on the type of memory 
block that the discriminant may reside in.  

 

1.2.6 Strings 

SCL supports the C language convention of null terminated strings via the scl_string() 
pragma. String support includes strings composed of the C language char type and short 
type (can be signed or unsigned).  Strings composed of char type elements are assumed to 
be ASCII strings. Strings composed of short type elements are assumed to be Unicode.  
The scl_string() pragma identifies the field that is being characterized as a string along 
with a fixed maximum limit on the string length. Although a string does not have an 
explicit length field, a current length is always implied by the position of the null (0) 
value.   If the number of characters (not including the null character) is exactly the limit 
of the length of the string, then there is no terminating null character.  

In most cases, the block of memory in which a field resides is of known, fixed size. This 
is true for string fields that are arrays. However, this is not necessarily the case for string 
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fields that are pointers. For example, assume a pointer, p, of type char* has been 
characterized as a string with a maximum limit of 100 characters. Subsequently p is 
assigned to point to a series of 10 characters, and an 11th character that is null (0). 
Further, assume that p is part of a payload that is passed from a user to an owner. What 
can the owner assume about the size of the storage unit that p points to? In other words, 
must the owner assume that p points to exactly 11 characters? Or may the owner assume 
that p points to exactly 100 characters as the prescribed maximum limit? The next section 
outlines conventions necessary to resolve these questions.   

1.2.6.1 Memory Conventions for Pointers Defined as Strings 
Memory conventions for strings are similar to those for sized pointers. In fact, the 
conventions correspond exactly to sized pointer conventions where both the size field and 
the pointer have the same directional attributes.  

Memory Conventions for Pointers Defined as Strings  

Pointer Directional 
Attribute 

User 
Obligation for 
Memory Size 
of  pointed to 

String 

Owner 
Assumptions 

for size of 
received data 

Owner 
Obligation 

For Returned 
String 

User 
Assumption 

For Receipt of 
Returned 

String 
IN BufferSize Up to NULL* Up to NULL* n/a n/a 
 Predictable 

Values 
Up to NULL* Up to NULL* n/a n/a 

OUT BufferSize Max Max Max Max 
 Predictable 

Values 
None None Up to 

NULL* 
Up to NULL* 

INOUT BufferSize Max Max Max Max 
 Predictable 

Values 
Up to NULL* Up to NULL* Up to 

NULL* 
Up to NULL* 

INRETURN BufferSize Up to NULL* Up to NULL* Up to 
NULL* 

Up to NULL* 

 Predictable 
Values 

Up to NULL* Up to NULL* Up to 
NULL* 

Up to NULL* 

RETURN BufferSize n/a n/a Up to 
NULL* 

Up to NULL* 

 Predictable 
Values 

n/a n/a Up to 
NULL* 

Up to NULL* 

Up to NULL* : The allocated buffer for the string extends only to the NULL 
character. In other words there is no commitment that the buffer extends beyond the 
NULL character nor are those characters beyond the NULL character prescribed to 
have any particular value. If there is no NULL character within the first Max 
characters, then the buffer is presumed to be exactly Max elements long and there is 
no trailing NULL character.  
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1.2.7 BitFields 

Designation of fields that are also bitfields is allowed anywhere their corresponding 
underlying type is allowed.  This means pragmas like scl_values() can be applied to 
bitfields; bitfields can be size fields & discriminants, etc.  

1.2.8 Brew Class Objects 

The scl_brew_class() pragma was invented as a convenience to Brew API developers. 
Brew developers simulate C++ classes and virtual functions within ANSI C by following 
a fixed set of conventions. The conventions are used to create classes referred to as 
“Brew Classes.”  A brew class is formed from a C structure type that is used to represent 
the C++ virtual function table. The structure must contain members which are of type 
pointer to function. Furthermore, these members must point to a function type whose first 
parameter is a pointer. Additional details TBD 

1.2.9 Conformant Arrays 

Conformant arrays are a convention used by C programmers to support variable length 
structures.  SCL supports the notion of a structure whose last member is an array whose 
actual length is determined by another field within the structure called the count field. 
This gives the effect of a variable length C structure.  
The scl_conform() pragma is used to identify a structure that is used as a conformant 
array. We call the structure “the conformant array structure.” The array field is called the 
“conformant array” and it must be the last member of the conformant array structure. 
Furthermore, it must be declared as an array with a single dimension, typically of length 
1, e.g. int x[1]. However, the declared length of the array is immaterial and will be 
ignored by the scl_conform pragma. The count field must also be a member of the 
conformant array structure.   

The count field and the conformant array must be members of the same structure 
(namely, the conformant array structure).  

1.2.9.1 Restrictions on the use of conformant array structures 
The use of conformant array structures is restricted to certain contexts. This is primarily 
because their use is via programmer defined conventions. They have no direct support in 
the C language.   

1. The type of a formal parameter, or return value of a function may not be a 
conformant array structure. (However a pointer to such is allowed).  

2. A field within a structure or union may not be a conformant array structure type 
(Although a pointer to such a type is allowed).  
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3. An array element type cannot be a conformant array structure type. (Although it 
may be a pointer to such a type.) 

4. The type pointed to by a sized pointer may not be a conformant array structure 
type. (Although a pointer to such type is allowed.) 

1.2.9.2 Memory Conventions for Conformant Arrays 
Conformant arrays are similar to sized pointers in that one field’s actual size depends 
upon the value of a related count field. However, they are different in that the conformant 
array count field’s possible location, relative to the array, is more limited than the size 
field of a sized pointer. Since the conformant array count field must be a member of the 
same structure (the conformant array structure), this means that the conformant array and 
count must always reside in the same payload block.  

Because the count field of a conformant array structure determines the size of the 
structure (and of the conformant array) conventions must be adopted in order to clarify 
the user and owner memory management responsibilities. The conventions specify the 
required sizes of allocated blocks containing conformant arrays when passed between 
agents.  
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The table below prescribes the memory conventions for conformant arrays. The block 
size depends on the memory attribute that contains the conformant array structure along 
with either the value of the count field or the maximum declared count of the conformant 
array. The actual formulas used for the calculation are listed immediately after the table.   

 Attribute of 
Block 
containing 
Conformant 
Array Structure 

Block Size 
Allocated by 

User 
Determined By 

Owner 
Assumed Block 

Size 
Determined by  

Owner 
Obligation For 

Returned Block 
Size 

Determined by 

User 
Assumption For 
Returned Block 
Size Determined 

By 

IN Countin Countin n/a n/a 

OUT MaxCount MaxCount MaxCount MaxCount 

INOUT MaxCount MaxCount MaxCount MaxCount 

INRETURN Countin Countin Countout Countout 

RETURN n/a n/a Countout Countout 
 

When Block Size is determined by Countin, the block size is:  

Block Size =  
   sizeof(conformant_array_structure) +  
   Countin * sizeof(conformant_array_element_type) –  
   declared_length_of_array * sizeof(conformant_array_element_type) 
 

When Block Size is determined by MaxCount the block size is:  

Block Size =  
   sizeof(conformant_array_structure) +  
   MaxCount * sizeof(conformant_array_element_type) –  
   declared_length_of_array * sizeof(conformant_array_element_type) 
 

When Block Size is determined by Countout the block size is:  

Block Size =  
   sizeof(conformant_array_structure) +  
   Countout * sizeof(conformant_array_element_type) –  
   declared_length_of_array * sizeof(conformant_array_element_type) 
 

1.2.10 Treatment of Function Parameters Declared as Arrays 

Given the function declaration:  

int f(char c[20]);  

 

According to C language rules, the type of c is converted from “array of char” to “pointer 
to char”. The length of the array (in this case 20) has no meaning.  
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The treatment of arrays as function parameters is in line with the ANSI C standard. The 
table below illustrates the treatment for several cases:  

Actual Declaration Treated as if it were declared 

int f(char c[20]); int f(char *c);  

int f(char c[10][20]); int f(char (*c)[20]);  

int f(char c[10][20][30]); int f(char (*c)[20][30]);  

 

In these examples, the type of the formal parameter c is automatically converted from 
“array of X” to “pointer to X.”. This is agreement with ANSI C language rules.  

Furthermore, this allows pragmas to be applied to c as if it were a pointer – which it is, 
since it is automatically converted to such.  

1.2.11 Pointers to Incomplete Types 

A pointer to an incomplete type, that is never completed, is treated as if it were cast to 
“void *” using scl_cast().  

1.2.12 Treatment of Unnamed Parameters in Function Prototypes 

STRIDE automatically gives unnamed parameters in function declarations a name. These 
names are synthesized to allow the parameters to be referenced by name from within 
pragmas.  

Unnamed parameters are named, from left to right order, with the name p<N> starting 
with N=1. If another parameter is already named p<N>, then p<N+1> is tried, then 
p<N+2>, etc. until a non-colliding name is found. 

For example,  

 int f(int , int p3, float,  double p1);  
 

is treated as if it were declared 

 int f(int p2 , int p3, float p4,  double p1);  
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1.2.13 Significance of SCL Pragma Source Code Location  

1.2.13.1 Location of pragma relative to C source  
A pragma that makes use of any C-language identifier or macro name (e.g., within an 
absolute specifier or constant expression) must appear after the declaration of the macro 
or identifier.  

Macros within pragmas are expanded according to macro context of their source location. 
(This is important because macros are not constant, they can come and go with #define 
and #undef.) 

1.2.13.2 Location of pragmas relative to each other 
The source location of pragmas relative to each other is has no effect on the semantics of 
the SCL Specification. The semantics are the same regardless of order.  

Order Exception For scl_cast() and scl_ptr_opaque() Pragmas 

There is one exception to the rule that the source location of pragmas relative to each 
other has no effect on semantics. The location of scl_cast() and scl_ptr_opaque() relative 
to other pragmas is important.  

The first rule of pragma location is that the pragmas must appear in the source code after 
the “C” language symbols they reference have been declared.  For example, in the 
fragment below, the scl_ptr() pragma must appear after the declaration of “S” and 
member “p” because the scl_ptr() pragma references them.  

typedef struct {int *p;) S; 
#pragma scl_ptr(S, p, OUT, PRIVATE)  

 

The problem with scl_cast() and scl_ptr_opaque() are that they have an effect that is 
equivalent to changing the C source that has been seen so far. Consider 

typedef struct { int *p; } S1;  
typedef struct {int *q; } S2; 
typedef struct { S1 * pS1; } S; 
#pragma scl_ptr(S, pS1->p, OUT, PRIVATE);     
    // at the time of parsing this pragma, and before the next one,  
    // S.pS1->p is validated as a  legal absolute specifier  
    // based on the C declarations seen so far.  
 
#pragma scl_cast(S.pS1, S2 *) 
    // This pragma alters the view of the preceding C source, 
    //  invalidating some absolute specifier combinations  
    // and creation new valid combinations 

 

In keeping with the rule that the C language symbols must be declared before use in a 
pragma, it follows that scl_cast()  must come prior to pragmas that refer to the casted 
symbols.  
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scl_cast() may not be applied to a set of runtime values that is a superset of runtime 
values specified for any previous pragma (See section 1.2.16 Absolute Specifiers for a 
description and definition of runtime value sets.) Colloquially, this means that scl_cast() 
and scl_ptr_opaque() can’t “cast away” information that has been prescribed by pragmas 
that have appeared earlier in the source code. 4 

1.2.14 SCL Translation Units 

An SCL specification need not all be translated all at once. It may be broken up in to 
units called workspace header files that are each translated independently. A workspace 
header file, together with all other included source, comprises a translation unit.  

Independently translated units are combined into a single compiled SCL specification. 
The number of units is determined by the number of workspace header files.   

The order of translation units in a valid SCL specification does not affect the outcome of 
the final compiled SCL specification. A single unchanged translation unit can be re-
compiled and re-combined into a previously compiled valid SCL specification and the 
result is a new specification that is equivalent to the original.    

The following defines how translation units are combined:  

• Assume there are two translation units, 1 and 2. The following are extracted and 
isolated from unit 1:  

o All the interfaces and tracepoints defined by (or synthesized for) all 
scl_func(), scl_function(), scl_fptr_list(), scl_ptr_flist(), scl_tp(), 
scl_tracepoint(), scl_cclass() and scl_brew_class() pragmas.  

o The set of all types referenced by any of the interfaces and tracepoints 
recursively along with any types referenced by these types. A type T is 
considered referenced if all the following are true:  

 T is not a function type and there exists at least one data element of 
type T or T*  that exists within the interface, message or tracepoint 
payload and T is not an incomplete type within the translation unit.  

 T is a function type  

o The set of all pragmas that reference any of the defined interfaces or 
referenced types.  

                                                 
4 An alternative way of stating this principle is if the target specifier of an scl_cast() pragma is a right 
subspecifier of any absolute specifier found in ay pragma which appears before it in a the source code then 
this is flagged as an error.   
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o The set of all object-like macro names and enumerated constant names. 

o All other information from the translation unit is discarded. This would 
include unreferenced types along with any pragmas that reference them.  

• The same information from unit 2 is isolated.  

The isolated information from unit 1 and unit 2 is combined in the following fashion: 

1. Interfaces and trace points are combined. The rules for any name and/or SUID 
collisions have been specified in other sections of this document.  

2. Object-like macro names and enumerated constants are combined. When 
combined, two object like macro’s with the same name must have identical values 
or an warning is recognized and the value of the constant in the Symbolic 
Constants Collection is changed to “ERROR_VALUE_CONFLICT”. The same is true for 
enumerated constants with the same name.  

3. If the isolated information from the two compilation units each contain a type 
with the same name (call them T1 and T2 respectively), then the following must 
hold:  

o T1 and T2  must have compatible types. Moreover, if they are structure, 
union or enumeration types, then they must follow the rules for 
compatible types defined in separate translation units (Section 6.2.7 of 
ISO/IEC 9899). If they do not have compatible type, an error will be 
raised.  

o Every pragma applied to T1 must have a corresponding equivalent pragma 
applied to T2 or an error will be raised. Two pragmas are equivalent if  

 they are the same pragma  
 any absolute specifiers within the pragmas are the same (i.e. have 

the same path and designate the same field)  
 All other attributes across the two pragmas are the same.  

If there are additional compilation units, then the information from the nth compilation 
unit is combined with the result of combining all the n-1 units in the same way.  

TBD: We have recently extended the language to not generate a merge error on typedef 
names that resolve to the same type. The formal definition of this needs to be completed.  
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Example 1: (Valid SCL) Pragmas for a given type must be included into each 
translation unit 

In the example below, the scl_ptr() pragma becomes a part of both translation units. This 
is a valid SCL Specification.  

 

Example 2: (INVALID) Pragmas for a given type not included into each translation 
unit 

In the example below, the scl_ptr() pragma is not a part of the workspaceHeader1 
translation unit. Thus an error will be recognized when the two translation units are 
combined.  
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Compilation of the above workspace yields an error because the type S does not have the 
same pragmas applied in the two translation units.  

Example 3: Some workspace header files have no effect on the output SCL 
Specification 

The rules for combining separately translated units require that each unit have at least one 
interface, trace point, object-like macro or enumerated constant for it to contribute to the 
output SCL specification. In the example, below we have three workspace header files 
(workspaceHeader1.h, workspaceHeader2.h and common.h). This is a valid SCL 
Specification. All its translation units compile and can be successfully combined. 
However, the workspace header file common.h contributes nothing to the translation 
process because it defines no interfaces, trace points, object-like macros or enumerated 
constants. It can be removed from the set of  workspace header files and the SCL 
Specification remains the same. (Note that if a change was made to common.h, then it 
was re-compiled, this would have no effect on the compiled SCL Specification.  

When a translation unit’s contents are discarded in this way, the compiler must issue a 
warning stating that the its contents did not contribute to the compiled SCL specification.   
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1.2.15 Self-Referential (Recursive) Data Structures 

A C language struct or union may have members that are pointers which either directly or 
indirectly point to an item of the same type. Such a struct or union is said to be self-
referential or recursive.  Each runtime instance of a recursive set must have identical SCL 
attributes. The SCL Language translator will issue an error if this is not the case.  

1.2.16 Absolute Specifiers 

Most pragmas require a set of C language runtime values to be designated as those to 
which the pragma applies. The values are fields within a particular message or function 
payload. The values to which a pragma applies depends on the expression used to 
identify them. Informally, the identification can be any of the following:  

• All instances declared using a particular set of typedef names.  
• Instances of a field or fields within a particular function payload – either 

Command or Response.  
• Instances of a field or fields within a particular message payload – either 

Command or Response. 
The following syntax formally specifies the language used to identify the values. The 
complete expression that designates the values is always referred to as an absolute 
specifier.  
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Absolute Specifier 
absolute-specifier :  
  type-specifier 
  function-return-val 
     message-response-qualification 
     message-command-qualification 
  formal-param 
  type-specifier-field 
     
type-specifier:  
 * type-specifier 
 ( type-specifier ) 
 single-identifier 
      
single-identifier :  
 identifier 
 
 
function-return-value :  
 func-identifier ()                 
 * function-return-value 
 ( function-return-value ) 
  function-return-value -> identifier 
  function-return-value . identifier 
 
message-response-qualification :  
 ( message-designation ) ()   
    message-rsp-field-designation 
 
msg-rsp-field-designation 
    ( message-designation ) () . identifier 

 * message-rsp-field-designation 
 ( message-rsp-field-designatio n) 
  message-rsp-field-designation -> identifier 
  message-rsp-field-designation . identifier 
 
message-command-qualification :  
 ( message-designation ) 
    message-cmd-field-designation 
 
message-cmd-field-designation 
    ( message-designation ) . identifier 
 * message-cmd-field-designation 
 ( message-cmd-field-designation  ) 
 message-cmd-field-designation -> identifier 
 message-cmd-field-designation . identifier 
 
message-designation : 
    message-name 
    suid-expression 
 
integer-constant-expression 
   must evaluate to a message suid 
 
formal-param :  
 func-identifier . param-name 
 * formal-param 
 ( formal-param ) 
 formal-param -> identifier 
 formal-param . identifier 
 
func-identifier : 
    identifier 
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param-name : 
 identifier 

 
type-specifier-field : 
 leftmost-specifier-name 
 *  type-specifier-field 
 type-specifier-field. identifier 
 type-specifier-field -> identifier 
 ( type-specifier-field ) 
 
leftmost-specifier-name : 
 identifier 
 enum identifier 
    struct identifier 
    union identifier 
 
 

Constraints 

• An absolute specifier denotes the syntax for designating a set of C-language 
runtime values. It is used throughout later sections of this document within many 
of the pragmas.   

• A single identifier is an identifier that is a type name. Depending upon the 
pragma, there may be further constraints on the allowable set of types designated.  

• A func identifier is an identifier that must resolve to a function that is identified 
with the scl_func() or scl_function() pragma.  

• A message name is the name given to a message resulting from the appearance of 
and scl_msg() pragama.  See later sections for specifics of how message names 
are formed.  

• A param name is an identifier that must resolve to a formal parameter of the 
function corresponding to func identifier. 

• A leftmost specifier name is the leftmost identifier in an expression that uses at 
least one of the *, -> or . operators and is not a function name. Unless otherwise 
noted, it must be a typedef name that is either a structure type, union type, or a 
pointer type that points to another pointer type, or points to a structure or union 
type.  If there is no typedef name that matches the identifier, then the space of tag 
names is searched. If this identifier is a struct or union tag name, then the 
identifier designates that struct or union type.  

• A function return value consists of a function name immediately followed by () 
that designates the value returned by the function.   

• suid expression is an integer constant expression that evaluates to the numeric 
SUID value of a message previously identified by the appearance of an scl_msg() 
pragma 

Semantics 

An absolute specifier identifies a set of C runtime values to which a pragma applies. It is 
possible for two absolute specifiers (that are part of two different pragmas) to identify a 
set of values that overlap. Consider the following SCL:  
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typedef int* INT_PTR; 
typedef struct S1 {INT_PTR *p;} S1;  
typedef struct S2 {S1* ps1;} S2; 
void  f(S2* ps2);  
#pragma scl_function(f) 
 

Given this example, the following are all valid absolute specifiers that can be used to 
identify instances of “p.” 

S1.p 
S2.ps1->p 
f.ps2->ps1->p 
 

Each identifies a different runtime value set:  

Absolute Specifier Corresponding runtime value set  

S.p All instances of the pointer p located within all 
instances of type S.  

S2.ps1->p 
 

All instances of the pointer p within all 
instances of type S that are pointed to by the 
ps1 field of all instances of S2.  

f.ps2->ps1->p 
 

The one and only p value located within the 
payload of f pointed to ps1, which is in turn 
pointed to by the parameter ps2.  

The diagram below depicts the sets’ relationship. Notice that the sets intersect and that 
the intersection relationship is such that one set is always a proper subset of the other.  

 

This is an important characteristic of absolute specifiers. When two absolute specifiers 
identify intersecting runtime value sets, they either identify exactly the same set, or one is 
a proper subset of the other.  

1.2.16.1 Formation of an Absolute Specifier from Base and Relative Parts 
Some forms of some pragmas allow the splitting of an absolute specifier into two parts, 
called the base-specifier and the relative-specifier. Although still supported, the use of 
base/relative form is discouraged. An absolute specifier is constructed from the base and 
relative parts by insertion of the entire base specifier expression immediately to the left of 
the first identifier in the relative specifier and placing a . (period) between them.   
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Examples of splitting an absolute specifier into base and relative parts is shown below. 
Under some circumstances, the split requires that the -> shorthand be normalized into the 
explicit * and . operations. An example of the various ways to split a given absolute 
specifier is shown below. 

Absolute Specifier Base Specifier Relative Specifier 
*(a.b).c->d.e->f   *(*(a.b).c->d.e) f 
 *(a.b).c->d  e->f 
 *(*(a.b).c) d.e->f 
 *(a.b) c->d.e->f   
 a *(b).c->d.e->f   
 

1.2.16.2 Designation of sized pointer elements in absolute specifiers  
The absolute-specifier syntax deliberately limits the designation of indexed elements 
(either by array or pointer subscripting) so that only the first element of such a series can 
be designated. In this way, pragmas can be applied only to the first element of a series. 
Application of a pragma to the first element is generalized to mean application of the 
pragma to every element of the series in an identical manner.    

When a pointer, p, is identified as a sized pointer (using scl_ptr_sized()), and another 
pragma is applied to an entity that p points to through the use of p in the absolute 
specifier, then the pragma application applies to all elements to which p points (since p is 
a sized pointer, it points to a series of elements). 

For example, in the SCL below, the pointer, p, is a sized pointer. When p is used within 
an absolute specifier to designate an element pointed to, the pragma applies to all the 
elements in the series pointed to by p, not just the first.   

typedef struct S {int *pInt; int y;} S;  
int f(int size, S* p);  
#pragma scl_function(f) 
#pragma scl_ptr_sized(f.p,IN, PRIVATE, f.size, 10) 
#pragma scl_ptr(f.p->pInt, IN, POOL) 
    // this pragma applies to all instances of pInt 
    // pointed to by f.p, not just the first 
 
 

1.2.16.3 Designation of Array elements in absolute specifiers  

The absolute specifier notation does not allow the designation of array elements using [ 
and ]. In fact, the notation deliberately prohibits the designation of the nth array element, 
but does allow the first element of an array series to be identified. Application of a 
pragma to the first element means application of the pragma to every element of the array 
in an identical manner.    

SCL allows this by leveraging the notion of equivalence of pointers and arrays. In C, 
every expression of the form:  
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 a[i] 

can be replaced with its equivalent “pointer” form: 

 *(a+i) 

Using this method, absolute specifiers can be used to generically designate the first array 
element and items within it without using [ and ]. Consider the example below. It applies 
the INOUT directional attribute to every p instance in the array contained by S for the 
interface f.  

typedef struct S { int *p } S;  
typedef struct S2 { S sArray[10]; } S2; 
void f(S2 s2);  
#pragma scl_function(f) 
    
#pragma scl_ptr_sized(f.s2.sArray->p, INOUT, PRIVATE, 23);  
    // applies pragma to all 10 instances of p 
 
 

1.2.16.4 Qualification of Message Payload Examples  
Message payloads may be qualified on a per-message basis by designation of the 
applicable message using either the message name or a numeric expression for the 
message SUID. See 1.2.16 Absolute Specifiers  for the formal definition. This section 
simply clarifies the formal definition through use of examples. .  

Items within message payload may be designated for qualification using two basic 
methods. The primary difference is how the message is identified. All messages have a 
name and the name may be used to associated the qualification back to the scl_msg() 
statement that defined the message. In addition, all messages have a SUID (a 31 bit 
integer) that uniquely identifies the message. This number may also be used to provide 
the association  between the scl_msg() pragma and this qualification.  

Examples of Qualifying Scalar Message Payloads  

// command example scalar payload 
#define Cmd 1 
#pragma scl_msg(Cmd, int) 
enum E {Red, Green, Blue};  
#pragma scl_values(Cmd, Red, Green, Blue);   

or 

//command example scalar payload 
#define Cmd 1 
#pragma scl_msg(Cmd, int) 
#pragma scl_cast(Cmd, unsigned int) 
 

or 

// response example scalar payload 
enum E {Red, Green, Blue};  
#define Rsp srMT_ONE_RSP | 1 
#pragma scl_msg(Rsp, int) 
#pragma scl_values( (Rsp)(), Red, Green, Blue) 
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or 

// response example sclalar payload with enum 
enum E {Red, Green, Blue};  
enum Messages{ Rsp =  srMT_ONE_RSP | 1};  
#pragma scl_msg(Rsp, int) 
#pragma scl_values( (Rsp)(), Red, Green, Blue) 

or 

// qualification using synthsized name 
enum E {Red, Green, Blue};  
#pragma scl_msg( 1 + 5, int) 
#pragma scl_values( (Msg0x6), Red, Green, Blue) 
 

or 

// qualification using numeric expression 
enum E {Red, Green, Blue};  
#define Cmd 1 + 5 
#pragma scl_msg( Cmd, int) 
#pragma scl_values( (2 + 4), Red, Green, Blue) 
 

or 

// two way msg qualification 
Enum E {Red, Green, Blue};  
#define TwoWay srMT_TWO | 1 
#pragma scl_msg(TwoWay, int, long) 
#pragma scl_values((TwoWay), Green, Blue) 
#pragma scl_values((TwoWay)(),  Red) 
 

Examples of Qualifying Non-Scalar Message Payloads  

If a message payload is not a scalar type it must be a structure or union type. Pointer 
types are not allowed. Note that the structure or union payload may contain a pointer 
type, but the type representing the root block of the payload may not be a pointer type. 
Again the message name or SUID numeric expression must always have parenthesis 
around it.   

// command msg non-scalar payload  
struct S { int *p, int i};  
#define Cmd 1 
#pragma scl_msg(Cmd, struct S) 
#pragma scl_ptr((Cmd).p, IN, PRIVATE);   

or 

// enum two way command using common type 
struct S { int *p, int i};  
enum E {TwoWay = srMT_TWO | 1};  
#pragma scl_msg(TwoWay, struct S, struct S) 
#pragma scl_ptr(TwoWay.p, IN, PRIVATE);   
#pragma scl_ptr(TwoWay().p, RETURN, PRIVATE); 
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1.2.17 Interaction between Pragmas 

By virtue of the absolute specifier used, pragmas may identify runtime value sets that 
overlap. This section prescribes semantics and handling of these cases.  

The SCL pragmas use a variety of ways to identify the objects to which the pragma 
applies. Some pragma’s identify the set applied to using a constant expression, some a 
function identifier, some an absolute specifier. In addition, each pragma typically further 
restricts the object set by disallowing (or allowing) only certain types, value ranges, etc.  
In this section we categorize the value sets that pragmas can be applied to. Use of these 
value sets will enable the identification of pragmas that have the potential to identify 
value sets that may overlap. The table below defines the sets and gives them a shorthand 
name.  

Set Name 
Shorthand Meaning 
Ptr A subset of the set of all runtime instances of type pointer, excepting 

pointer to function and void * and pointer to other incomplete type that 
is never completed. 

Ary A subset of the set of all runtime instances of type array. 
U A subset of the set of all runtime instances of type union. 
S A subset of the set of all runtime instances that are of type struct.  
FID A single identifier from the set of all function identifiers. 
CE A constant expression. 
MID CE whose value has been promoted the status of MID by an scl() 

pragma. 
STPID A CE whose value has been promoted to the status of STPID by an 

scl_tracepoint() pragma 
pF A subset of the set of all runtime instances that are of type ptr to function
Int A subset of the set of all runtime instances of one of the standard integer 

types AND the set of all runtime instance that scl_ptr_opaque has been 
applied to. 

Count The set of all runtime instances of Count fields identified by 
scl_ptr_sized pragmas.  

Disc The set of all runtime instance of discriminants identified by scl_union 
pragmas 

UMember The set of all runtime instances that have been identified as an activated 
member via a scl_union_activate pragma 
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We now identify the set that each pragma may affect and determine which pragmas can 
have overlapping value sets.  

Pragma 

Sets It 
May 

Affect 
May Overlap 

With Remarks 
scl_func FID scl_function  
scl_function FID scl_func  
scl_values Int scl_cast  
scl_cast Ptr , Int, 

pF 
scl_ptr 
scl_ptr_sized 
scl_string 
scl_ptr_opaque 

scl_cast can be applied to any 
pointer type along with 
integral types.  

scl_ptr Ptr scl_ptr_opaque 
scl_ptr_sized 
scl_string 
scl_cast 

 

scl_ptr_opaque Ptr scl_ptr 
scl_ptr_sized  
scl_string 
scl_cast 

 

scl_ptr_sized Ptr scl_ptr 
scl_ptr_opaque 
scl_string 
scl_cast 

 

scl_string Ptr scl_ptr 
scl_ptr_opaque 
scl_ptr_sized 
scl_cast 

 

scl_string Ary scl_conform  
scl_union U scl_union_activat

e 
 

scl_union_activate U scl_union  
scl_fptr_list pF scl_ptr_flist 

scl_cast 
scl_brew_class 
scl_cclass 

 

scl_ptr_flist pF scl_fptr_list 
scl_cast 
scl_brew_class 
scl_cclass 

 

scl_tracepoint CE   
scl_tracepoint_forma
t 

STPID   

scl_cclass S, pF scl_fptr_list The absolute specifier for an 
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Pragma 

Sets It 
May 

Affect 
May Overlap 

With Remarks 
scl_ptr_flist 
scl_conform,  
scl_brew_class 
scl_cast 
 

scl_cclass pragma identifies a 
struct, but an scl_cclass 
pragma also adds attributes to 
member of that struct that are 
of type ptr to function. In this 
way, scl_cclass applies to both 
S and pF at the same time.  

scl_brew_class S, pF scl_fptr_list 
scl_ptr_flist 
scl_conform,  
scl_cclass,  
scl_cast 
scl_ptr_opaque 

Applies to both S and pF in a 
way similar to scl_cclass.  

scl_conform S, Ary scl_string, 
scl_brew_class, 
scl_cclass, 

The absolute specifier for an 
scl_conform pragma identifies 
as struct, but also affects the 
last member of that struct 
which must be an array. In this 
way, scl_conform applies to 
both S and Ary at the same 
time.  
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1.2.17.1 Interaction between different pragmas 
This section addresses the interaction between different pragmas. Two pragma instances 
are considered to be different pragmas if the pragma names are different. There are two 
basic cases of interaction between different pragmas:  

1. The pragmas can be applied to the same value set.  

2. The pragmas can be applied to overlapping, but not the same, value sets.  

Different Pragmas applied to the same value set 

It is an error if two different pragmas are applied to the same value set with the following 
exceptions: 

• scl_ptr() and scl_string() may be applied to the same value set and the effect is 
additive.  

• scl_union_activate() may be applied to the same value set as other pragmas and 
the effect is additive.  

• Other pragmas may be applied to the same value set as scl_cast(), with the 
exception of scl_ptr_opaque(),  providing that the other pragma appears after 
scl_cast() in the source. It is an error if scl_ptr_opaque() is applied to the same 
value set as scl_cast() when appearing after the cast in the source.  

• Related  scl_union/scl_union_activate pragmas must identify exactly the same 
runtime value set for the union. Otherwise they are not related. 

• scl_values and scl_ptr_opaque may bed applied to the same value set and the 
effect is additive.  

• It is an error if scl_func and scl_function are applied to the same FID. 
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Different Pragmas applied to overlapping value sets 

When two different pragmas are applied to overlapping value sets, it is always the case 
that one of the value sets is a proper subset of the other. This is depicted below. We call 
the larger, less specific set the “Outer” set and the smaller, more specific set the “Inner.”  
We will refer to the outer as the less-specific specifier while the inner will be the more-
specific specifier. 
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The table below defines the semantics of the interaction between all pragmas that may be 
applied to overlapping value sets.  

Outer Inner Semantics 
scl_ptr_opaque <any except 

scl_values) 
Error 

scl_ptr_opaque scl_values Inner is additive with outer 
<any except 
scl_ptr_opaque> 

scl_cast Inner overrides outer 

scl_cast scl_ptr_opaque Error 
scl_cast <any 

scl_ptr_opaque> 
scl_cast must have appeared first in the 
source. The other pragma refers to the 
transformed program structure in place 
after scl_cast has been applied.  

scl_ptr, scl_ptr_sized scl_ptr_opaque Inner overrides outer 
scl_ptr_opaque scl_ptr,  

scl_ptr_sized, 
scl_string 

Error. works same as cast to void 

scl_ptr_sized scl_ptr Inner overrides outer 
scl_ptr scl_ptr_sized Inner overrides outer 
scl_ptr scl_string Inner is additive with outer 
scl_string scl_ptr Inner is additive with outer 
scl_ptr_sized scl_string Error 
scl_string scl_ptr_sized Error 
scl_string scl_ptr_opaque Inner overrides outer 
scl_conform scl_string Error 
scl_string scl_conform Error 
<any except scl_cast 
or scl_union> 

scl_union_activate Inner is additive with outer 

scl_union_activate <any except scl_cast 
or scl_union> 

Inner is additive with outer 

scl_fptr_list/ptr_flist scl_fptr_list/ptr_flist Inner overrides outer 
scl_brew_class/cclas
s 

scl_fptr_list/ptr_flist Inner overrides outer  

scl_fptr_list/ptr_flist scl_brew_class/cclas
s 

Inner overrides outer 

scl_conform scl_brew_class/cclas
s 

Error 

scl_brew_class/cclas
s 

scl_conform Error 

scl_values <d Inner is additive with outer 
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1.2.17.2 Same pragma applied to overlapping value sets 
This section addresses the interaction between same pragma overlapping value sets. Two 
pragma instances are considered to be the same pragma if the pragma name is the same. 
The parameter values need not be the same.  

The table below details the semantics for handling the same pragma applied to the same 
or overlapping value sets. As the table shows, it is always an error for the same pragma to 
be applied to the same value set. And, with the exception of cast, in the case of pragmas 
whose value sets overlap, but are not the same, the inner (more specific) always overrides 
the outer (less specific).  

Pragma 

When Applied To 
Same Value Set 

 
When applied to overlapping value 

Sets 
scl_func Error n/a 
scl_function Error n/a 
scl_msg Error n/a 
scl_values Error Inner overrides outer 
scl_cast Error Inner overrides outer  
scl_ptr Error Inner overrides outer 
scl_ptr_opaque Error Inner overrides outer 
scl_ptr_opaque Error Inner overrides outer 
scl_ptr_sized Error Inner overrides outer 
scl_string Error Inner overrides outer 
scl_string Error Inner overrides outer 
scl_union Error Inner overrides outer 
scl_union_activate Error Inner overrides outer 
scl_fptr_list Error Inner overrides outer 
scl_ptr_flist Error Inner overrides outer 
scl_tracepoint Error n/a 
scl_tracepoint_format Error n/a 
scl_cclass Error Inner overrides outer 
scl_brew_class Error Inner overrides outer 
scl_conform Error Inner overrides outer 
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Examples 

It is an error if scl_ptr() is applied twice to the same value set, as shown in the following 
example:  

typedef int* INT_PTR; 
int f(INT_PTR p);  
#pragma scl_function(f) 
#pragma scl_ptr(f.p, OUT, PRIVATE) 
#pragma scl_ptr(f.p, IN, PRIVATE)   
    // Application of same pragma to the same value set twice. 
    // This is an error even if the second pragma was exactly the 
    // same as the first.   

 

The same pragma can sometimes be applied using value sets that overlap, as shown in the 
following example:   

    typedef int* INT_PTR; 
int f(INT_PTR p);  
#pragma scl_function(f) 
#pragma scl_ptr(INT_PTR, OUT, PRIVATE) 
#pragma scl_ptr(f.p, IN, PRIVATE)   
    // Application of same pragma to overlapping value sets. 
    // This is OK and the pragma containing the more specific 
    // absolute specifier will take effect within f.    
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1.2.17.3 Pragma Derivations 
When a pragma with an outer (less-specific) specifier is used, its inner (more-specific) 
specifiers derive the same pragma. This interaction typically leads to confusing errors for 
the user. So this section will describe the overall pragma derivation scheme in how it 
relates to pragmas of different types. 

General Pragma Derivations 

This section describes the typical derivation process. Most SCL pragmas adhere to the 
following processing: 

typedef struct { int* p; } S1; 
typedef struct { S1* pS; } S2; 
typedef S1 S3; 
#pragma scl_ptr(S1.p, "OUT", "PRIVATE") 
 

For the above snippet of code, S1.p was used in a pragma with an "OUT" direction. This 
resulted in two other pragmas being derived: 

#pragma scl_ptr(S2.pS->p, "OUT", "PRIVATE") // derived (indirectly) 
#pragma scl_ptr(S3.p, "OUT", PRIVATE")      // derived (directly) 
 

These pragmas were derived because they are of the same type as the generalized 
pragma. However, there is nothing to prevent the user from actually declaring his own  
pragmas instead of these derived pragmas. In a sense, the user could create pragmas as: 

#pragma scl_ptr(S2.pS->p, "INOUT", "PRIVATE")   
#pragma scl_ptr(S3.p, "IN", PRIVATE")           
 

We say that the generalized pragma of S1.p is a less-specific pragma in relation to the 
other two. The other two pragmas (S2.pS->p and S3.p) are more specific because they 
identify smaller sets of pointers. 

If we think of this in terms of sets, we have the following: 

 

All the S3.p pointers are S1.p pointers. All the S2.pS->p pointers are S1.p pointers. 
Applying a pragma to S1.p automatically applies to the other two unless they are 
overridden with a more-specific pragma specifier.  

In general, a user may use a pragma with a less-specific specifier followed by a pragma 
with a more-specific specifier or visa-versa. This rule applies only to pragmas of the 
same type. Exceptions to this rule are scl_ptr_opaque and scl_cast. 
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Pragma Derivation Exceptions 

The scl_cast pragma and scl_ptr_opaque pragma operate differently than the other 
pragmas. If these pragmas are used, pragmas with more-specific specifiers must be 
declared prior to pragmas with less-specific specifiers.  

scl_ptr_opaque Derivations 
This pragma is functionality the same as scl_cast(p, void*). It doesn’t make sense to have 
two scl_ptr_opaque pragmas with a more-specific specifier and less-specific specifier 
because the pointer of the more-specific is no longer reachable.  

Problems occur when a different pragma type uses a less-specific specifier and the 
scl_ptr_opaque is used with a more-specific specifier. This causes problems because the 
scl_ptr_opaque may not remove a prior derived pragma of a different pragma type.  

typedef struct { char* pChar; } S4; 
typedef struct { S4* pS4 } S5; 
typedef struct { S5* pS5 } S6; 
#pragma scl_string(S4.pChar, 10) 
// #pragma scl_string(S5.pS4->pChar, 10)          // derived 
// #pragma scl_string(S6.pS5->pS4->pChar, 10)     // derived 
#pragma scl_ptr_opaque(S5.pS4) // generates an error 
 

The error is generated because while a more-specific pragma may override a less-specific 
pragma, it may only do so for a pragma of the same kind. Currently, the only exception 
for this rule is scl_ptr/scl_ptr_sized (this are functionally the same except one carries a 
size). For this example, the scl_ptr_opaque cannot remove nor castaway the derived 
scl_string pragma for S5.pS4->pChar.  

Notice in this example that if the scl_ptr_opaque were allowed to removed the derived 
pragma for S5.pS4->pChar that it would also have to remove the derived pragma with the  
S6->pS5->pS4->pChar specifier.  

This restriction prevents compilation from constantly undoing derived processing. In 
complex programs with many pragmas it is not only difficult for the compiler, it is 
impossible for the user to determine what actually happened. Due to this restriction, at 
the insertion of each pragma the program specifiers are validated against all prior 
specifiers. Thus, we know that at any point in time the integrity of pragma compilation.  

If we had wanted the prior program to work, the scl_ptr_opaque could have been 
declared prior to the other pragmas. This would have prevented the other pragmas from 
being derived. 

typedef struct { char* pChar; } S4; 
typedef struct { S4* pS4 } S5; 
typedef struct { S5* pS5 } S6; 
#pragma scl_ptr_opaque(S5.pS4)  
#pragma scl_string(S4.pChar, 10) 

scl_cast Derivations 
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Cast Pragma Derivations are more troublesome than scl_ptr_opaque. An 
scl_ptr_opaque(p) pragma is functionally the same as scl_cast(p,void*). However, 
scl_cast is far more complex. This is because when one type is casted to another, it 
automatically derives all pragmas associated with the new type. 

typedef struct { int* p; } S7; 
typedef struct { int nCastMe; } S8; 
#pragma scl_ptr(S7.p, ”OUT”, ”PRIVATE”) 
#pragma scl_cast(S8.nCastMe, S7*) 
// #pragma scl_ptr(S8.nCastMe->p, ”OUT”, ”PRIVATE”) // derived 
 

In most programs containing a moderate number of pragmas a cast will typically result in 
some pragmas being derived from the cast. This presents problems in using scl_cast. 
Using scl_cast requires the more-specific specifiers be casted prior to the less-specific 
specifiers. A less-specific specifier casted to another type is “removed” from the set of  
pointers it resides in. Once casted, it is no longer a member of its prior “Outer” less-
specific set. Thus for our earlier example, the following pragmas would result in: 

#pragma scl_cast(S3.p, S9*) 
#pragma scl_ptr(S1.p, “OUT”, “PRIVATE”) 
//#pragma scl_ptr(S2.pS->p, “OUT”, “PRIVATE”) // derived 
 

 

Notice that S3.p did not derive an scl_ptr pragma.  

This is inheritance rule is also holds true when scl_cast is casts from more-specific to 
less-specific such as: 

typedef struct { int* p; } S1; 
typedef struct { S1* pS; } S2; 
typedef S1 S3; 
typedef struct { int* p9; } S9; 
#pragma scl_ptr(S9->p9,”OUT”,”PRIVATE”) 
#pragma scl_cast(S3.p, S9*) // more-specific 
//#pragma scl_ptr(S3.p->p9, ”OUT”, ”PRIVATE”)    // derived 
 
#pragma scl_cast(S1.p, S9*) // less-specific 
//#pragma scl_cast(S2.pS->p, S9*)                // derived 
//#pragma scl_ptr(S2.pS->p->p9, ”OUT”,”PRIVATE”) // derived 
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Notice that no pragma was in conflict with the derived pragmas. However, the reverse 
(less-specific to more-specific casting) is not valid and will result in an error: 

typedef struct { int* p; } S1; 
typedef struct { S1* pS; } S2; 
typedef S1 S3; 
typedef struct { int* p9; } S9; 
typedef struct { int* p10; } S10; 
#pragma scl_ptr(S10->p10, ”INOUT”, ”PRIVATE”) 
#pragma scl_ptr(S9->p,”OUT”,”PRIVATE”) 
#pragma scl_cast(S1.p, S10*) // less-specific 
//#pragma scl_cast(S3.p, S10*)                   // derived 
//#pragma scl_ptr(S1.p->p10, ”INOUT”, ”PRIVATE”) // derived 
//#pragma scl_ptr(S3.p->p10, ”INOUT”, ”PRIVATE”) // derived 
#pragma scl_cast(S3.p, S9*) // more-specific generates error 

 

By the time the user declared the second scl_cast for S3.p, the S3.p specifier was already 
casted AND it had already acquired derived pragmas associated with the casting. Thus, 
the user’s scl_cast of S3.p could not remove the derived pragma of a different type (in 
this case the scl_ptr(S3.p->p10,…)). 

1.2.18 Macro Replacement Within Pragmas 

Unless otherwise noted, macro replacement is always performed within SCL pragmas.  

1.2.19 Target and Host Settings 

The mapping of C-language datatypes into memory layouts is directly affected by the 
target settings of the SCL compiler. An SCL compiler must be configured to match the 
commercial compiler in use.  

1.2.20 Declaration Before Use in Pragmas 

Absolute specifier expressions and constant expressions within pragmas can only contain 
symbols (i.e., identifiers, macro names, etc) that have already been declared. 

1.2.21 Trace Points 

SCL supports the definition of trace points that can be activated from the target by 
specific calls to runtime APIs.  Trace points are defined with scl_tracepoint(). Trace 
points have an optional payload. The formatting of the payload data may be described 
with scl_tracepoint_format(). Each trace point has an STPID. The STPID consists of a 
unique 16-bit ID. The STPID value of zero (0) is reserved; thus 65,535 unique trace 
points are available. There are no constraints on different application threads using the 
same trace point. The optional trace point payload can be used to associate application 
data with a trace point to be routed to and displayed by the host. Trace point payloads 
have several additional restrictions:  



STRIDE Communication Language Reference  

 Copyright © 2001 – 2008 S2 Technologies, Inc. 57 

• they may not contain unions 

• they may not contain pointers 

• they may not contain conformant arrays 

• TBD: What about void*? What if all their ptrs were prag’d with 
scl_ptr_opaque?...  

The STPID of a trace point and the SUID of a SMID occupy different numeric spaces 
(i.e., an STPID and SUID can have the same value). 

1.2.22 AutoSUID Generation 

The pragmas scl_function(), scl_brew_class(), and scl_ptr_flist() allow SUID 
management to be performed within SCL. 

1.2.23 Symbolic Constants Table 

The symbolic constants collection (accessible via iScript.Constants) is a table that is 
created as part of a compilation and contains entries for macro names present in the 
source. Its primary purpose is to allow scripts to use the symbolic names for various 
constants just as the C source code does.   

The symbolic constants table contains <name,value> pair entries that map symbolic 
names to constant values. An entry is created for each of the following: 

• Every enumeration constant. The constant name and integral constant value 
together comprise the <name,value> pair.  

• Every non-parameterized macro present in the source. 
• The name of the <name,value> pair is the macro name. 
• The value of the <name,value> pair can be either of the following: 

o The macro text portion of the #define, exactly as is, or 
o The number, if the SCL processor can resolve the text portion to a 

number. The text portion is resolvable if:  
 The value is a constant expression whose identifiers are either: 

- simple macros that evaluate to a number 
- parameterized macros that evaluate to a number 
- enumerated constant names.  

 The value can be represented by a signed 32 bit integer.  
 

The table is constructed from the macro state in place at the end of the compilation unit. 
This is important because a single macro name can be assigned any number of different 
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values during the course of a compilation (via the #define and #undef pre-processing 
statements).  

It is possible that when compilation units are combined, either as a result of a single-file 
compilation or the result of a complete re-compilation, that a symbol constant name that 
is present in two or more compilation units will have a different value. This situation is 
detected during the compilation and a warning is issued. Furthermore, because it is not 
possible to know which of the different values is the preferred value, the constant will be 
assigned the string value: “ERROR_VALUE_CONFLICT" within the symbolic 
constants table.  

 

 

1.2.24 Typedef Propagation of SCL Attributes 

If a pragma is applied to a set of runtime values designated by an absolute specifier 
whose leftmost identifier is type T, then that pragma also applies to any other types that 
are defined in terms of T. A typename T2 is defined in terms of T, if:  

• T is used in the declaration specifiers of the typedef statement that defined T2  
-or- 

• T2 is defined in terms of some other type, T3, that is defined in terms of T.  
 

Example Explanation 

typedef struct _S {int x;} S;         
 

S is defined in terms of struct _S 

typedef struct _S {int x;} S, *PS;  S and PS are defined in terms of struct _S.  

typedef int* INT_P;  
typedef INT_P* INT_PP;  
typedef INT_PP *  INT_PPP;  

INT_PP: is defined in terms of INT_P.  

INT_PPP is defined in terms of both INT_P 
and INT_PP.  

Any pragmas applied to INT_P will also 
apply to INT_PPP if not overridden by 
pragmas applied to INT_PP.  

typedef Struct _S {int x; } S;  
typedef S S2;  

S is defined in terms of struct _S.  

S2 is defined in terms of both S and struct 
_S;  



STRIDE Communication Language Reference  

 Copyright © 2001 – 2008 S2 Technologies, Inc. 59 

  

 

1.2.25 Treatment of tag names 

In ANSI C mode, the compiler should search the “ordinary” symbols to resolve a symbol 
(if there was no struct/union/or enum keyword immediately preceding it). Then it should 
search the tag name symbols. In C++ mode (a future option) tag names and ordinary 
identifiers are in the same namespace so this becomes a moot issue.  

Implications:  

Example 1: struct keyword is optional. Search will resolve if there is no collision. 
struct S { int *p;}; 
scl_ptr(S, p, OUT, PRIVATE);      // no struct keyword necessary 

 

Example 2: Keyword can be explicit 
struct S { int *p;}; 
scl_ptr(struct S, p, OUT, PRIVATE);       

 

Example 3: Ordinary namespace searched first 
struct S { int *p;}; 
typedef struct {int x; int *p;} S;  
scl_ptr(S, p, OUT, PRIVATE);     // applies to unnamed struct with 
typedef name S 

Example 4: Namespace search can be controlled by the keyword 
struct S { int *p;}; 
typedef struct {int x; int *p;} S;  
scl_ptr(struct S, p, OUT, PRIVATE);     // applies to struct S 

 

Example 5: A minor drawback of this approach 

The following is valid SCL. It compiles successfully and has the expected meaning: 

struct S { int *p;}; 
scl_ptr(S, p, OUT, PRIVATE);      // no struct keyword necessary 

 

If I make the following change this will no longer be considered valid SCL:  

struct S { int *p;}; 
typedef struct {int x; } S;   
scl_ptr(S, p, OUT, PRIVATE);   // syntax error: typedef name S has 
no p      
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This syntax error can be resolved by introduction of the struct keyword:  

struct S { int *p;}; 
typedef struct {int x; } S;   
scl_ptr(struct S, p, OUT, PRIVATE);     // OK, talking about struct 
S now 

 
Note: This same treatment applies to all tag names (i.e., enum and union as well as 
struct).  

1.2.26 Const objects 

A data object that is const qualified may only reside in an IN, INOUT, RETURN or 
INRETURN block. A const qualified data object that resides in an OUT block is 
diagnosed as an error.  

Any ptr that is const qualified must abide by an additional restriction: If it resides in an 
INOUT block it cannot be RETURN or INRETURN qualified.  

1.2.27 Application of pragmas to parameters via typedef name for 
function type prohibited 

Application of pragmas to parameters using typedef names, rather than concrete function 
names, is not allowed. For example:  

typedef int (F) (int *p, int size);    // introduces typedef 
                                       // name “F” for a function 
                                       // type with 2 params 
 
// ERROR!!!!! The pragma below is an error because F is a typedef 
// name, not an actual function name 
 
#pragma scl_ptr(F.p, IN, PRIVATE);  
 

This restriction is a corollary of the Absolute Specifiers section beginning on page 38, 
since the leftmost identifier in an absolute specifier for a function must be a function 
identifier and cannot be a typedef name.  

1.2.28 Application of pragma’s to pointers to incomplete types 

An error will result if a pragma is applied to a pointer field or pointer type, and the type 
pointed to is incomplete.  

1.2.29 Unnamed fields of type struct or union 

In the ANSI C language (but not C++) it is possible to have a field within a structure or 
union be unnamed. The following source fragment illustrates a structure with three such 
unnamed fields.  
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typedef struct S{ 
    union u{ 
        int i; 
        char *c; 
        float f; 
    }; 
    union u2 { 
        double d;  
        int k;  
    };  
    struct s1 { 
        int happy;  
        int day;  
    }; 
}S; 

 

The challenge presented by such a construct how to identify the subfields of the unknown 
field. Normally subfields are identified using the name of the parent field. But in this case 
there is no such name and there are three unnamed members of S. 

For the purposes of SCL and all subsequent specification, the SCL language translator 
will treat all such unnamed fields as if they had a name. The synthesized name will be 
“name<n>” where n is a digit or series of digits denoting the position of the unnamed 
field relative to the others. If a collision occurs between the synthesized name and any 
other existing name, the next n will be chosen until the collision is resolved.  

This implies the above source fragment will be treated by the SCL language translator as 
if it were written below:  

typedef struct S{ 
    union u{ 
        int i; 
        char *c; 
        float f; 
    }unnamed1; 
    union u2 { 
        double d;  
        int k;  
    }unnamed2;  
    struct s1 { 
        int happy;  
        int day;  
    }unnamed3; 
}S; 

1.2.30 Naming of Unnamed Bitfields 

Unnamed bit fields are given names by the SCL language translator following the same 
rules as unnamed fields of type struct or union. That is, synthesized name is “name<n>” 
where n is a digit or series of digits denoting the position of the unnamed field relative to 
the others. If a collision occurs between the synthesized name and any other existing 
name, the next n will be chosen until the collision is resolved. 
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1.2.31 Treatment of Zero-Length Array as Member of a Structure 

An optionally allowed extension to ANSI C, SCL allows any member of a structure to be 
an array declared with 0 length. This feature is most useful for the last member of a 
struct. For the purpose of the following discussion, assume what have such a case:  

struct S { 
   char i;  
   ... // all else omitted 
   T ary[0]; 
};  

 

For brevity we omit struct in the discussion below when referring to the type struct S.  
The declaration of the zero length array affects S in the following ways:  

• The sizeof S will be adjusted upward if necessary so that it ends on a boundary 
suitable for the offset of the first element of ary, had one existed.  

• The alignment requirements of S will be adjusted upward as necessary as if S had 
at least one element in ary.  

1.2.32 Parameter Names in SCL Absolute Specifiers 

A set of compatible declarations for a function f(), need not be consistent in parameter 
names (although the types must be consistent). The first parameter may have a different 
name in each declaration or may not even be declared. It is even possible that the first 
parameter in one declaration uses the same name as a different parameter, say parameter 
2, in another declaration. For example the following are all compatible declarations for 
f() 

int f(int x, int y, int z);  
int f(int , int, int);  
int f(int z, int y, int x);  
 

Since parameters are designated by name in SCL absolute specifiers, this leads to an 
ambiguity. For the above declarations, x, can designate either the first or third parameter, 
depending upon whether we are considering the first or third declaration. The solution for 
SCL is that within an absolute specifier, the first declaration encountered permanently 
names the parameters, regardless of how many declarations exist. So for this example 
then, x is parameter 1 of f(), y is parameter 1 of f() and z is parameter 3 of f().  

1.2.33 Additional restrictions for cast (Section TBD) 

Entire section TBD. This is a marker for an area of SCL that is not very well defined and 
needs to be developed. Intuitively, this section identifies additional restrictions on the 
interaction between scl_cast() and other pragmas.  
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The following SCL should be rejected because the scl_cast() pragma invalidates the 
union/discriminant relationship that has previously been set up.  

 
typedef struct 
{ 
  int * pDisc; 
  union { int x; } u; 
} S; 
 
#pragma scl_union(S.u, S.pDisc.[0]) 
 
void f1(S parm1); 
#pragma scl_function(f1) 
#pragma scl_cast(f1.parm1.pDisc, void *) 
 

 
Reasoning:  

f1.parm1.u will adopt the attributes of any pramgas applied to S.u via right subspecifier 
inheritance.  It would be as if a user had entered the following:: 

scl_union(f1.parm1.u, *f1.parm1.pDisc) 
 

However, in the context of f1.parm1.pDisc the type of pDisc is no longer int *, but has 
been cast to void*, making the type unsuitable to become a discriminant.  

 

1.2.34 Test Classes 

A test class is a C++ class developed with the specific intent of Stride testing.  It is not 
part the application logic to be tested, rather it is developed with the intent of driving the 
application logic to be tested. A test class has the following characteristics:  

• A test class is bound with the executable to be tested. It is part of the same 
application binary. In this way, test classes are usually part of test product builds 
rather than the final release product build.  

• It is designed to separate test logic from the framework necessary to drive the test 
and record the results. A test class implements test logic. The Stride framework 
takes care of calling the test and managing results.  

• Test class member functions contain test logic and each is treated as a test case.  
• Fixtures (both setup and teardown) are supported. A setup fixture is code that is 

run immediately prior to every test case. A teardown fixture is code that is run 
immediately after ever test case.  

• Test class initialization and deinitialization, is supported via the class constructor 
and destructor.  

• Stride provide a set of pragmas to identify and elaborate test classes.  
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1.2.34.1 Test Class Details 
A test class must be a public class. It may reside in any namespace. It cannot be nested 
within another class. I 

1.2.34.2 Test Method Details 
A test method must have the following characteristics 

• It must have no parameters.  
• It must be declared by they test class (it cannot be implicitly declared via 

inheritance from a base class).  
• It must return void, bool or integral type (signed or unsigned version of long, int, 

short or char) 
Test methods that return bool indicated test status by the return value. True for test 
success, false for failure.  

Test methods that return an integal type indicate test status by the return value. Zero for 
success, non-zero for failure.  

Test methods that return void must utilize the Stride runtime API’s to indicate test status. 
If they do not use the API’s to report status their status will always default to “in-
progress.” 

1.2.34.3 Fixtures 
In addition to test methods, a test class may have a setup and or teardown fixture. A setup 
or teardown fixture is identified as such using the scl_test_setup() and 
scl_test_teardown() pragmas. A setup fixture is a class method that is called immediately 
prior to every test method. A teardown fixture is a class method that is called 
immmediately after every test method.  

 

1.3 SCL Pragmas Reference 
This section details the allowed syntactic forms of all pragmas.  

1.3.1 General Syntax issues 

All SCL pragmas can optionally end in ; . 

All SCL Pragmas in C mode must always appear at the outer most scope (outside the 
scope of any function). It is an error if they do not.  

All SCL Pragmas in C++ mode must always appear at the outer most scope. They may 
not appear within the scope of any namespace, class, fuction, etc. It is and error unless 
they are in the outer most scope outside of all namespaces.  
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1.3.2 scl_func   

Syntax 
#pragma scl_func ( SUID, function-name ) ;opt 
 
function-name : 

identifier  
 

SUID : 
integer_constant_expression 

 

Constraints 

• Functions whose names are overloaded may not have scl_func applied to them.  

• Integer constant expression must evaluate to a number between 1 and 224. 
• The integer constant that the SUID resolves to must be unique among both 

functions and messages, or an error is recognized.  
Semantics 

Identifies the function as one that is interceptable and remotable. Information about this 
function and its parameters will be maintained within STRIDE. 

1.3.3 scl_function  

Syntax 
#pragma scl_function ( function-name ) ;opt 
 
function-name : 

identifier  

 

Constraints 

In C mode any function may have scl_function successfully applied to it5. In C++ mode 
only functions declared in the global namespace that have all POD types as return values 
and parameters may have scl_function() sucessfully applied.  Furthermore, the function 
cannot be overloaded in the compilation unit or it will be an error.  

Semantics 

Identifies the function as interceptable and remotable. Information about this function 
and its parameters will be maintained within STRIDE. 

                                                 
5 However, care must be taken with the application of scl_function to functions with static scope. Unless 
they are defined in the same compilation unit as the intercept module they may result errors at target 
application link time (unresolved symbol references) 



STRIDE Communication Language Reference 

66 Copyright © 2001 – 2008 S2 Technologies, Inc. 

1.3.4 scl_msg  

Syntax 
#pragma scl_msg ( SMID) ;opt 
#pragma scl_msg ( SMID_Cmd, cmd-payload-type ) ;opt 
#pragma scl_msg ( SMID_Rsp, rsp-payload-type ) ;  opt

#pragma scl_msg ( SMID_CmdRsp, cmd-payload-type, rsp-payload-type ) 
;opt 

 
SMID: 
  integer_constant_expression 
 
SMID_Cmd: 
 integer_constant_expression 
 
SMID_Rsp: 
 integer_constant_expression 
 
SMID_CmdRsp: 
 integer_constant_expression 
 
cmd-payload-type : 

type-specifier 
 

rsp-payload-type: 
type-specifier 
 

void 
 

 

Constraints 

SMID must be a non-parameterized macro name, enumeration constant or constant 
expression that resolves to an integer constant expression. If the SMID is a non-
parameterized macro name or enumeration constant, then the message name is exactly 
the characters of the macro name or enumeration constant. If the SMID is not a macro 
name or enumeration constant, then the message name will be synthesized based on the 
numeric value of the SMID. The synthesized name is “Msg0x<hexdigits>” where 
<hexdigits> is the smallest number of hexadecimal digits from the set 0..9a..e that 
represent the numeric value of the SMID. (Notice this precludes leading 0’s. from the 
hexdigits string as well as capitol letters.). The name of the SMID, whether explictly 
specified via macro or enumeration constant name or implicitly created from a numeric 
expression cannot collide with any other message or function name or it is an error.  

SMID, SMID Cmd, SMID Rsp and SMID Cmd Rsp must all be integer constant 
expressions that evaluate to a number within the range 1 to 230 – 1 and follows the rule 
for a STRIDE Message ID as outlined in previous sections. All unused fields (bits) in the 
SMID Attributes must be set to 0 or it is an erorr. More specifically a one-way command 
message must have Str and Pur set to 0 or and error is recognized. Likewise a one-way 
response and broadcast message must have Stc and Puc set to 0 or an error is recognized.  
The Rsvd field (2 bits) must also be 0 or an error will be recognized.  
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Type specifier (either cmd-payload-type or rsp-payload-type) must designate a type that 
is not a pointer type or may be “void” to indicate the absense of any payload value.  

Integer constant expression evaluates to a 32-bit value, but with the SMID format 
described in earlier sections. Bits 24 through 29 determine the payload configuration, and 
thus the allowable form of the pragma. It is an error if there is mismatch between the 
attribute bits and the number of arguments supplied.  

Message payloads may not contain types that are ptrs to functions that have been further 
characterized by scl_ptr_flist (or scl_fptr_list) pragmas.  

Any pointers contained in a one-way command message payload must have direction IN 
or it is an error.  

Any pointers contained in a one-way response message payload or broadcast message 
payload must have direction RETURN or it is an error.  

Any pointers contained in a the command portion of a two-way message must have 
direction IN or it is an error. Any pointers contained in the response portion of a two-way 
message must have direction RETURN or it is an error.  

Semantics 

Identifies a message of interest. The message will be interceptable and remotable. 
Information about the payloads and the associated types will be maintained by STRIDE.   

1.3.5 scl_values  

Syntax 
#pragma scl_values ( absolute-specifier-item, values ) ;opt 

     #pragma scl_values ( base-specifier-item, relative-specifier-item, values) 
;opt 

 
absolute-specifier-item: 

absolute-specifier 
 

base-specifier-item: 
base-specifier 
 

relative-specifier-item: 
relative-specifier 
 

values:  
 enum-type-specifier 
 constants-list 

 
enum-type-specifier : 

enum identifier 
identifier  

 
constants-list : 

number-list 
cf 

number-list : 
integer-constant-expression 
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number-list , integer-constant-expression 
 

Constraints/Semantics 

If the absolute specifier designates a type specifier, then it must be a name for one of the 
types from the allowed types table below. Otherwise, the absolute specifier identifies a 
set of instances whose type must be one of the types from the allowed types table below 
or a typedef name for such.    

The object instances or type identified by the pragma are constrained to the specified set 
of values. Values outside this set are considered “out of range.”  

The values may consist of a single identifier that is an enum specifier, or a typedef name 
for an enumerated type. If so, the effect of the pragma is equivalent to an explicit values 
list consisting of all the enumerated constants of that enumerated type in declaration 
order.  

Each value in the number-list is assigned both a symbolic name and an integral value. 
The symbolic name can be any of the following:  

• The macro name if the value is defined by a macro. (The macro name must be a 
non-parameterized macro.) 

• The enumerated constant name if the value is an enumeration constant.  
• If the constant is not a simple macro name or enumerated constant name (that is, 

it is some kind of expression), then the name is the constant expressed as a 
decimal number, including its sign if the value is negative.  

Two values in the number-list may not have the same symbolic name. This will be 
recognized as a syntax error. Two values in the number-list may have the same value as 
long as the symbolic name is different.  

If a constant in the values list is outside of the represent able range of the type or instance 
to which it is applied (according to either host or target platform characteristics) but can 
be converted according to C-language conversion rules, a compiler warning will be 
issued. At runtime, assignment of such a constant to the field should follow C-language 
assignment rules (i.e., the value of the constant is converted to the type of the destination 
value, then the assignment is made). 

If a constant in the values list is not type-compatible with the type or instance to which it 
is applied, a compiler error will be issued.  
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scl_values() does not change the underlying type of the instances to which it is applied. If 
those instances are referenced by other pragmas, the type is unaffected; however, the 
instances will have constrained values.  

Allowed C-types Table 
C type Type categories Allowed C-

types 
short, int, long, long 
long  
(signed and unsigned) 

Y 

char (signed and 
unsigned) 

Y 

_Bool N 
enum {…} 

Integral types 

N 
float, double, long 
double 

Floating-point 
types 

Arithmetic 
types 

N 

T * Pointer types 

Scalar types 

(Y/N)1
 

T […] Array types N 

struct {…} Structure types 
Aggregate 
types N 

union {…} Union types N 
T (…) Function types N 
void Void type N 
 

Note: scl_values can be applied to opaque pointers only.  

1.3.6 scl_cast  

Syntax 
#pragma scl_cast(absolute-specifier-item, type-specifier-to) ;opt 
#pragma scl_cast(base-specifier-item, relative-specifier-item, 
type-specifier-to) ;opt 
 
absolute-specifier-item: 

absolute-specifier 
 

base-specifier-item: 
base-specifier 
 

relative-specifier-item: 
relative-specifier 

 
type-specifier-to : 

type-specifier-to * 
identifier 

 

Constraints 
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• The sizeof() the instance(s) or type being reassigned must be equal to the sizeof() 
the type to which it is reassigned.  

• The scl_cast() pragma may only be applied to the integral type and pointer type 
instances, or typedef names for integral types or pointer types. The type specifier 
must designate a pointer type or integral type.  

• scl_cast() cannot be applied to bit fields. 
• An error will result if scl_cast() is applied to a set of runtime values that intersects 

with the set of values explicitly specified by any pragma that has appeared earlier 
(by way of lexical position) in the source code. Colloquially, this means that 
scl_cast() can’t “cast away” information conveyed by previous pragmas. (Refer to 
section 1.2.16, Absolute Specifiers, beginning on page 38 for a description and 
definition of runtime value sets.) 

Semantics 

Informs STRIDE that it should treat the object instances (identified by an absolute 
specifier item) as if they are of the reassigned type. If the reassigned type is further 
elaborated via other SCL pragmas, the instances will be treated as if the pragmas are 
additive.  

scl_cast() changes the runtime value set it identified by transforming the identified set’s 
type. Any pragma may use the transformed identity. No pragma may use the original 
identity.  

Special Exceptions 

scl_cast() may be used to cast a data item of type void* or unsigned char* to a 
union type if all members of the union are of type pointer.  
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1.3.7 scl_ptr  

Syntax 
#pragma scl_ptr(absolute-specifier_ptr, direction, usage) ;opt 
#pragma scl_ptr(base-specifier_ptr, relative-specifier_ptr, 

direction, usage) ;opt 
 
absolute-specifier-ptr: 

absolute-specifier 
 

base-specifier-ptr: 
base-specifier 
 

relative-specifier-ptr: 
relative-specifier 

 
direction : 

“IN” 
“OUT” 
“INOUT” 
“RETURN” 
“INRETURN” 

 
usage : 

“PRIVATE” 
“POOL” 

 

Constraints 

The absolute specifier (or the absolute specifier formed by the base and relative specifier) 
must identify either: 

• An identifier that is a type specifier and must be a pointer type that is not pointer 
to void or pointer to function 
-or- 

• A set of instances that have pointer type that is not pointer to void or pointer to 
function 

There are certain restrictions on the allowed combinations of direction and usage. See 
previous sections for details. All disallowed combinations will be enforced by the 
compiler.  

Semantics 

Informs STRIDE as to additional semantics (primarily direction and usage) associated 
with a pointer type or identified instances.  

1.3.8 scl_ptr_opaque  

Syntax 
#pragma scl_ptr_opaque( absolute-specifier-ptr ) ;opt 
#pragma scl_ptr_opaque( base-specifier-ptr, relative-specifier-ptr 
) ;opt 
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absolute-specifier-ptr: 
absolute-specifier 
 

base-specifier-ptr: 
base-specifier 
 

relative-specifier-ptr: 
relative-specifier 

 
base-specifier:  
    as-defined 

 

Constraints 

The absolute specifier (or the absolute specifier formed by the base and relative specifier) 
must identify either: 

• An identifier that is a type specifier and must be a pointer type that is not pointer 
to function 
-or- 

• A set of instances that have pointer type that is not pointer to function 

There are certain restrictions on the allowed combinations of direction and usage. See 
previous sections for details. All disallowed combinations will be enforced by the 
compiler.  

• An error will result if scl_ptr_opaque() is applied to a set of runtime values that 
intersects with the set of values explicitly specified by any pragma that has 
appeared earlier (by way of lexical position) in the source code. Colloquially, this 
means that scl_ptr_opaque() can’t “opaque away” information conveyed by 
previous pragmas. (Refer to section 1.2.16, Absolute Specifiers, beginning on 
page 38 for a description and definition of runtime value sets.) 

 

Semantics 

Informs STRIDE that the type or instances of the pointers identified are to be treated as if 
they were of type pointer to void. 
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1.3.9 scl_ptr_sized  

Syntax 
#pragma scl_ptr_sized(absolute-specifier-ptr, direction, usage, 

max-elements) ;  opt

#pragma scl_ptr_sized(absolute-specifier-ptr, direction, usage, 
max-elements, absolute-specifier-count-field) 
;  opt

#pragma scl_ptr_sized(base-specifier-ptr, relative-specifier-ptr, 
direction, usage, max-elements, relative-
specifier-count-field) ;  opt

#pragma scl_ptr_sized(base-specifier-ptr, relative-specifier-ptr, 
direction, usage, max-elements) ;opt 

 
absolute-specifier-count-field:  
    absolute-specifier designating the count field 
 
absolute-specifier-ptr:  
    absolute-specifier designating the pointer 

 
base-specifier-ptr:  
    base-specifier 
 
relative-specifier-ptr:  
 relative-specifier for pointer  
 
relative-specifier-count-field: 
 relative-specifier for count 

 
direction : 

“IN” 
“OUT” 
“INOUT” 
“RETURN” 
“INRETURN” 

 
usage : 

“PRIVATE” 
“POOL” 

 
max-elements:  
 Integer-constant-expression  
 

Constraints 

The absolute specifier (or the absolute specifier formed by the base and relative specifier) 
must identify either: 

• An identifier that is a type specifier and must be a pointer type that is not pointer 
to void or pointer to function 
-or- 

• A set of instances that have pointer type that is not pointer to void or pointer to 
function 

There are certain restrictions on the allowed combinations of direction and usage. See 
previous sections for details. All disallowed combinations will be enforced by the 
compiler.  
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There are certain memory allocation/initialization polices that must be followed for sized 
pointers. See previous sections for details.   

When a sized pointer pragma prescribes a count field, there are certain restrictions on the 
count field relative to the location of the pointer.  

• The count field may not reside in any block pointed to by the sized pointer in 
question.  

• The count field may reside in the same memory block as the pointer.  
• The count field may reside in any ancestor block or descendent of an ancestor 

block that is pointed to by a path containing only single pointers.  
• The count field and pointer may also reside in different payloads (i.e., one may be 

in the command payload and the other may be in the return payload). When this is 
the case, the path through the payload blocks from root to count and/or size field 
must contain only single pointers (if there are any).  

• If the count field resides in a union member, the sized pointer must also reside in 
exactly the same union member.  

The type of the element count field must be one of the standard integer types.  

max elements is an integer constant expression in the range 1 to a configuration 
dependent maximum. Furthermore, the max elements value must fit within the type of 
the element count field, or an error will result.  

As a special case, if the pointer direction is IN and a count field has been specified, then 
the max_elements constant expression may evaluate to zero (0). Zero means that the 
maximum number of elements is not specified and the system limit should be used.   

Semantics 

Informs STRIDE as to additional attributes of pointers that are used to point to a series of 
elements allocated in contiguous memory.  

When a scl_sized_ptr() is applied to a pointer it is said to be a “sized pointer.”   

At runtime: 

• If the actual value of the count field is zero, then the value of the (sized) pointer is 
considered to be undefined and no particular meaning can be ascribed to it.  

• If the actual value of the count field is less than zero, it will be treated as if it were 
zero.  

• If the actual value of the count field is greater than the (non-zero) max-elements, 
it will be treated as if it were equal to the max elements.  
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1.3.10 scl_string   

Syntax 
#pragma scl_string( absolute-specifier-string, max-count ) ;opt 
#pragma scl_string( base-specifier-string, relative-specifier-
string, max-count ) ;opt 
 
max-count : 

Integer-constant-expression 
 
absolute-specifier-string:  
    absolute-specifier 
 
relative-specifier-string:  
    relative-specifier 
 
base-specifier-string:  
    base-specifier 

 

Constraints 

The absolute specifier must identify either of the following: 

• A type specifier that can be a pointer type or an array type;  
o If it is a pointer type, the type pointed to must be either char (with or 

without the signed/unsigned qualification) or short (with or without the 
signed/unsigned qualification), or a type name for such.  

o If it is an array type, the array type must be a single-dimension array with 
an element type of either char (with or without the signed/unsigned 
qualification) or short (with or without the signed/unsigned qualification), 
or a type name for such. The max-count must not exceed the declared 
length of the array or it is an error.  

• A set of instances that are of pointer type or array type with the same constraints 
as above.   

Max count is an integer constant expression that evaluates to within the range 1 to a 
configuration dependent maximum.  

   

 

Semantics 

If the element or pointed-to type is of type char (either signed or unsigned), then the 
string is assumed to be an ASCII string. If it is of type short (either signed or unsigned), 
then the string is assumed to be a UNICODE string.  

The strings are considered to be null-terminated; the actual length of any string instance 
is the minimum of the max-count and the location of the null termination character.   
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Special case: the maximum length string (as constrained by the max count) does not have 
a null termination character.   

1.3.11 scl_union   

Syntax 
 

#pragma scl_union ( union-absolute-specifier, fixed-active-member-index) 
;  opt

#pragma scl_union ( union-absolute-specifier,  
                   discriminant-absolute-specifier ) ;opt 
#pragma scl_union ( base-specifier-union, union-relative-specifier, 

discriminant-relative-specifier ) ;opt 
#pragma scl_union (base-specifier-union, union-relative-specifier, 

fixed-active-member-index) ;opt 
 
fixed-active-member-index : 

Integer-constant-expression 
 
union-absolute-specifier : 

absolute-specifier for the union 
 
discriminant-absolute-specifier : 

absolute-specifier for the discriminant 
 
base-specifier-union : 

base-specifier 
 
union-relative-specifier : 
 relative-specifier for the union 
 
discriminant-relative-specifier : 

relative-specifier for discriminant 

 

Constraints 

The union absolute specifier identifies either of the following:  

• A type specifier that must be of type union  
-or-  

• A set of instances that must be of type union   
The fixed active member index is an integer constant expression in the range of 0 – n-1, 
where n is the number of members in the union and identified in the nth member.  

The absolute specifier for the discriminant identifies a field whose value determines 
which member of the union is active. The type of this field must be either integer, 
enumerated type or typename for such.  
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When a union pragma prescribes a discriminant field, the following restrictions exist on 
the discriminant field relative to the union:  

• The discriminant may be an internal discriminant and reside in exactly the same 
offset within every union member, as described in previous sections.   

• The discriminant field may reside in the same memory block as the union.  
• The discriminant field may reside in any ancestor block or descendent of an 

ancestor block that is pointed to by a path containing only single pointers.  
• The discriminant field and union may also reside in different payloads (i.e., one 

may be in the command payload and the other may be in the return payload). 
When this is the case, the path through the payload blocks from root to count 
and/or size field must contain only single pointers, if there are any.  

Semantics 

Refer to the Unions section on page 22 for background on all union concepts.  

1.3.12 scl_union_activate 

Syntax 
#pragma scl_union_activate (base-specifier, relative-member-

specifier, constant-value-list) ;opt 
 
constant-value-list : 

Integer-constant-expression 
constant-value-list , Integer-constant-expression 

 
relative-member-specifier:  
 relative-specifier 
 
base-specifier:  
 base specifier;  

 

 

Constraints 

• The absolute specifier formed from the base specifier and relative member 
specifier must be a union member. The absolute specifier must be of the form 
<U>.<identifier>, where <identifier> is the name of the union member and  <U> 
is itself an absolute specifier that identifies the union. For this 
scl_union_activate() pragma to be valid, <U> must have been used in an 
scl_union() pragma identifying <U> as a discriminated union.  If no such pragma 
exists, then this scl_union_activate() instance will raise an error.  

• The integer constant expressions in the constant value list must all evaluate to 
integer constants that are within the range represent able by the discriminant field 
(after application of any relevant scl_cast() or scl_values() pragmas). 

• An error will result if there are two integer constant expressions within the same 
list that evaluate to the same value.  
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• An error will result if two different members of the same union have integer 
constant expressions that evaluate to the same value.  

• Only one scl_union_activate pragma may be applied to any set of member 
instances.  

Description 

Refer to the Unions section on page 22 for background on all union concepts.  

1.3.13 scl_fptr_list  

This pragma is deprecated. 

Syntax 
#pragma scl_fptr_list ( absolute-specifier-ptr, candidate-name-list 

) ;opt 
#pragma scl_fptr_list ( base-specifier-ptr, relative-specifier-ptr, 

candidate-name-list ) ;opt 
 
#pragma scl_fptr_list (absolute-specifier-ptr, assigned-SUID, 

string-literal-name) ;opt 
#pragma scl_fptr_list (base-specifier-ptr, relative-specifier-ptr, 

assigned-SUID, string-literal-name ) ;opt 
 
absolute-specifier-ptr : 

absolute-specifier 
 
base-specifier-ptr : 

base-specifier 
 

relative-specifier-ptr : 
relative-specifier 

 
candidate-name-list : 

candidate 
candidate-name-list , candidate 

 
candidate : 

identifier 
 
assigned-SUID : 

integer-constant-expression 
 
string-literal-name : 

“identifier ” 
 

Constraints 

The absolute specifier (or combination of base and relative specifier) identifies a set of 
instances of type pointer to function.  

Each candidate in the candidate names list is a function name that must appear in an 
scl_func() or scl_function() pragma. The signature of the function (i.e. the return type and 
parameter types) need not be the same as the type of the field. Their prototypes need not 
have the same number of parameters, nor types, nor do the return types need to match.  If 
the prototypes do not match a warning (but not an error) will be issued.  
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assigned_SUID must be an integer constant expression in the range allowed for a SUID. 
Furthermore, the value must not collide with any other SUID or it is an error.  

The string literal name is an identifier enclosed in double quotes. The identifier must be 
syntactically suitable for a function name. For each such string literal name STRIDE will 
treat it as if it’s declaration had been seen and it had been identified with scl_func() or 
scl_function().  Each such string literal name must not collide with any other scl_func() 
or scl_function() pragma, in either  name or SUID (in the case of scl_func()).  

When a string literal name is used, its effect is to declare a function with the literal name 
(and parameters) and make the name available as a function to allow qualification of its 
parameters. For example:  

typedef void (*PF)(int *pi);  
typedef struct S{ 
   PF   pf;  
} S;  
scl_fptr_list(S.pf, “f”, “g”);  
scl_ptr(f.pi, OUT, PRIVATE);  
 

is correct SCL, because the scl_fptr_list() pragma has the effect of the source below. The 
source in blue is source that is internally synthesized as a result of the pragma:  

typedef void (*PF)(int *pi);  
typedef struct S{ 
   PF   pf;  
} S;  
scl_fptr_list(S.pf, “f”, “g”);  

void f(int *pi);  
#pragma scl_function(f) 
void g(int *pi);  
#pragma scl_function(g);  

scl_ptr(f.pi, OUT, PRIVATE);  
 

Semantics 

The scl_fptr_list() pragma identifies a set of specific functions whose address may be 
passed as part of the payload field.  
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1.3.14 scl_ptr_flist  

This pragma is deprecated.  

Syntax 
#pragma scl_ptr_flist( absolute-specifier-ptr, candidate-list ) ;opt 
#pragma scl_ptr_flist( base-specifier-ptr, relative-specifier-ptr, 

candidate-list) ;opt 
 
absolute-specifier-ptr : 

absolute-specifier 
 

base-specifier-ptr : 
base-specifier 
 

relative-specifier-ptr : 
relative-specifier 
 

candidate-list :  
candidate-list, candidate 
candidate-list, string-literal-name 
candidate 
string-literal-name 

 
candidate : 

identifier 
 

string-literal-name : 
“identifier” 

 

Constraints 

The absolute specifier (or combination of base and relative specifier) identifies a set of 
instances that have type pointer to function type.  

Each candidate in the candidate names list is a function name that must appear in a 
scl_func() or scl_function() pragma. The type of the function (i.e. the return type and 
parameter types) need not be the same as the type of the field. Their prototypes need not 
have the same number of parameters, nor types, nor do the return types need to match.  If 
the prototypes do not match a warning (but not an error) will be issued.  

The string literal name is an identifier enclosed in double quotes. The identifier must be 
syntactically suitable for a function name. For each such string literal name STRIDE will 
treat it as if it’s declaration had been seen and it had been identified with scl_func() or 
scl_function().  Each such string literal name must not collide with any other scl_func() 
pragma, in either  name or SUID.  

When a string literal name is used, its effect is to declare a function with the literal name 
(and parameters) and make the name available as a function to allow qualification of its 
parameters. For example:  

typedef void (*PF)(int *pi);  
typedef struct S{ 
   PF   pf;  
} S;  
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scl_fptr_list(S.pf, “f”, “g”);  
scl_ptr(f.pi, OUT, PRIVATE);  
 

is correct SCL, because the scl_fptr_list pragma has the effect of the source below. The 
source in blue is source that is internally synthesized as a result of the pragma 

typedef void (*PF)(int *pi);  
typedef struct S{ 
   PF   pf;  
} S;  
scl_fptr_list(S.pf, “f”, “g”);  

void f(int *pi);  
#pragma scl_function(f) 
void g(int *pi);  
#pragma scl_function(g);  

scl_ptr(f.pi, OUT, PRIVATE);  

 

TBD: Default Candidate info 

Semantics 

See previous section 1.2.4 Pointers to Functions.  

The scl_ptr_flist() pragma identifies a set of specific functions whose address may be 
passed as part of the payload field. 

1.3.15 scl_msg_bind (removed) 

The scl_msg_bind pragma has been removed. This entry exists as a placeholder to 
preserve section numbering of the pragmas. 

1.3.16 scl_tracepoint 

Syntax 
scl_tracepoint ( STPID ) ;opt 
scl_tracepoint ( STPID, tp-payload ) ;opt 
 
tp-payload : 

type-name 
 
type-name:  
 identifier 

 

The name scl_tp() is deprecated and follows the syntax for scl_tracepoint exactly. 

Constraints 

type name is a type specifier for a type that is the (optional) payload of the tracepoint. As 
long as the type either is not a pointer or does not contain a pointer (in the case of a struct 
or union type),  the entire payload will automatically be marshaled from target to host 
and be available for display on the host. The format of the displayed values can be further 
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described, if desired using the scl_tracepoint_format() pragma (See the next section for 
details on scl_tracepoint_format()).  

Trace point payloads have several additional restrictions:  

• they may not contain unions 

• they may not contain pointers unless the pointer (or its type) has had 
scl_ptr_opaque applied to it, or the pointer’s type is void * or it is a pointer to an 
incomplete type that is never completed in the compilation unit.  

• they may not contain conformant arrays 

 

Semantics 

Identifies the STPID with a trace point. The target application must be instrumented with 
calls to the srTracePoint() API for the trace points to be displayed.  
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1.3.17 scl_tracepoint_format  

Syntax 
scl_tracepoint_format ( STPID, format-string [, format-args] ) ;opt 
 
format-string : 

string-literal 
 
format-args : 

arg 
format-args , arg 

 
arg : 

relative-specifier 

 

The name scl_ tracepoint_format() is deprecated. It has exactly the same functionality as 
scl_tracepoint_format() with no other changes.  

Constraints 

STPID has been previously identified via the trace point pragma scl_tracpoint().  

format-string is a string literal that contains the string to display when the trace point is 
activated. It may optionally contain format specifications identical to those used by the 
ANSI C library printf() routine that correspond to format args. Format args, if present, 
must be members of the type designated as the tracepoint payload type.  

format string and format args follow the printf style of specifying data to format and 
display. 

TODO: This section needs some cleanup 

Semantics 

Defines trace point payload formatting rules.  

The scl_tracepoint format pragma defines a format string for a printf-style trace point.  

1.3.18 scl_cclass  

This pragma is deprecated in favor of scl_brew_class 
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Syntax 
scl_cclass ( base-SUID, absolute-specifier-struct ) ;opt 
scl_cclass ( base-SUID, absolute-specifier-struct [, 
member1..,memberN] ) ;opt 
 
base-SUID : 

SUID 
 
absolute-specifier-struct : 

absolute-specifier 
 

memberN : 
identifier 

 

Semantics And Constraints 

Semantics and constraints are exactly the same as  _class() with the following 
differences:  

base-SUID explicitly defines a starting point for SUID assignment for the member 
functions of the class.  
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1.3.19  scl_brew_class 

Syntax 
scl_brew_class (absolute-specifier-struct [, member1..,memberN] ) 
;opt 
 
absolute-specifier-struct : 

absolute-specifier 
 

memberN : 
identifier 

 

Constraints 

absolute-specifier designates a type name or set of instances that are of structure type, T. 
If no members are specified in the pragma, then members of the structure that are of type 
pointer to function and whose first parameter is of any pointer type,  will be identified as 
class methods. Each identified member will be assigned a SUID that is base-SUID + n 
where n is the declaration order of the members starting with n = 1. The name of the 
member will also be changed so that it is prefixed with “T_”.  

If any members are specified then the identifier for each must exactly match a member of 
the structure T. Each such member must be of type pointer to function and whose first 
parameter is of whose first parameter is of any pointer type. Only the explicitly specified 
members of T will be identified and treated as class methods. The first parameter of 
every member will be treated as if its type were “void *” regardless of its actual type.  

If only the absolute specifier for the struct is specified (i.e., no members are explicitly 
identified) and there are no members automatically identified as class methods then a 
warning will be issued.  

It is an error if any explicitly specified member is either not found or does meet the 
requirements to become a class method.  

Semantics 

Converts a struct into a brew-based class. 
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1.3.20 scl_conform  

Syntax 
scl_conform ( container-struct-specifier, relative-specifier-count-
field, max-count ) ;opt 
 
container-struct-specifier : 

absolute-specifier 
 
relative-specifier-count-field : 

relative-specifier 
 
max-count : 

integer-constant 

 

Constraints 

container struct specifier must identify either a type name for a structure or a field that is 
of type pointer to structure. The last member of the struct must be an array. This member 
is referred to as the “conformant array.” The declared length of the array is ignored 
within SCL. The structure is referred to as the conformant array structure.  

relative specifier count field identifies a member of the conformant array structure that, at 
run-time, specifies the number of elements in the conformant array. This field is relative 
to container struct specifier.  

The count field must be located in the same payload block as the conformant array. In 
other words, its relative specifier cannot include indirection (either * or ->).   

max count is an integer constant expression that gives the maximum number of elements 
and is in the range 1 to a configuration dependent maximum. Furthermore, the max count 
value must fit within the type of the element count field, or an error will result. 

The element type of the conformant array may not contain a conformant array structure. 

A conformant array structure may not be pointed to by a sized pointer. If a conformant 
array structure is pointed to by a sized pointer, a compile-time error will be issued.  

A conformant array structure may not be a member of any other structure or union. If a 
conformant array structure is contained as a member of any other structure or union then 
a compile-time error will be issued.  

A conformant array structure may not be passed as a function parameter. If a conformant 
array structure is used as a function parameter then a compile-time error will be issued.  

Semantics 

Specifies a struct type or pointer to such that acts as a conformant array structure. 
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Conventions For Out-Of-Range Count Fields 

Given a payload that contains a conformant array structure, it is possible that agent 
setting up such a payload will assign a value to the count field that is out of range. An out 
of range value is one that is either less than 0 or greater than the prescribed maximum 
size. (A conformant array count field must reside in the same block as an array, so that 
there no possibility of the out of range condition caused by a null value of the pointer to 
the count field)   

When the count field is out of range in a payload containing a conformant array, it is 
treated as if it were 0 and a runtime warning is issued.  

Examples 

The examples below are all based on this SCL 

typedef struct S { int size; ary[1]} S;  
#pragma scl_conform(S, size, 100);  

 

SCL Examples (Valid) Explanation 
 
int f(S *ps);    ps is a pointer to a conformant array structure 

 
int f(S **ppS);  ppS is a pointer to a conformant array structure 

 
struct S2 { 
        S *ps;  
        int i;  
   } s2;     
 

ps is a pointer to a conformant array structure.  

SCL Examples (Invalid) Explanation 
 
int f(S s);        Conformant array structure may not be a parameter to a 

function. Compiler error is issued.  

 
struct S2 { 
        S s;  
        int i;  
   } s2;     
 

Conformant array structure may not be a member of 
another structure. Compiler error is issued.  
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1.3.21 scl_fptr_anonymous 

Pragma to identify anonymous candidates. 

There is no base/relative form for this pragma. 

Syntax 
#pragma scl_fptr_anonymous( absolute-specifier-ptr,  
                           anon-candidate-list ) ;opt 
 
absolute-specifier-ptr : 

absolute-specifier 
 
 

anon-candidate-list :  
candidate-list, string-literal-name 
string-literal-name 

 
 

string-literal-name : 
“identifier” 

 

Constraints 

The absolute specifier (or combination of base and relative specifier) identifies a set of 
instances that have type pointer to function type.  

The absolute specifier must start with a function identifier. It may not be a type specifier. 
(The reason for this is to disallow the same anonymous callback to be used in more than 
one function.)  

The string literal name is an identifier enclosed in double quotes. The identifier must be 
syntactically suitable for a function name. For each such string literal name STRIDE will 
treat it as if it’s declaration had been seen and it had been identified with scl_func() or 
scl_function().  Each such string literal name must not collide with any other scl_func() 
pragma, in either name or SUID.  

When a string literal name is used, its effect is to declare a function with the literal name 
(and parameters) and make the name available as a function to allow qualification of its 
parameters. For example:  

typedef void (*PF)(int *pi);  
typedef struct S{ 
   PF   pf;  
} S;  
int parent(S s);  
#pragma scl_function(parent) 
scl_fptr_anonymous(f.s.pf, “f”, “g”);  
scl_ptr(f.pi, OUT, PRIVATE);  
 

is correct SCL, because the scl_fptr_anonymous pragma has the effect of the source 
below. The source in blue is source that is internally synthesized as a result of the pragma 

typedef void (*PF)(int *pi);  
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typedef struct S{ 
   PF   pf;  
} S;  
scl_fptr_anonymous(f.s.pf, “f”, “g”);  

void f(int *pi);  
#pragma scl_function(f) 
void g(int *pi);  
#pragma scl_function(g);  

scl_ptr(f.pi, OUT, PRIVATE);  

 

 



STRIDE Communication Language Reference 

90 Copyright © 2001 – 2008 S2 Technologies, Inc. 

1.3.22 scl_fptr_named  

For capturing named candidates.  

There is no base/relative form of this pragma.  

Syntax 
#pragma scl_fptr_named ( absolute-specifier-ptr,  
                             named-candidate-list ) ;opt 
 
absolute-specifier-ptr : 

absolute-specifier 
 

named-candidate-list :  
named-candidate-list, named-candidate 

 
named-candidate : 

identifier 

 

Constraints 

The absolute specifier identifies a set of instances that have type pointer to function type.  

Each named candidate in the named candidate list is a function name that must appear in 
a scl_func() or scl_function() pragma. The type of the function (i.e. the return type and 
parameter types) need not be the same as the type of the field. Their prototypes need not 
have the same number of parameters, nor types, nor do the return types need to match.   

A warning is issued when all named candidates on the same list do not have matching 
types. To have matching types, the function types for all candidates must be compatible 
in the C Language sense (as defined by ISO/IEC 9899:1999) 
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1.3.23 scl_test_class  

Identifies test classes. 

Syntax 
#pragma scl_test_class 

(class_specifier[,init_method[,deinit_method]
]) ;opt 

 
class_specifier : 
    ClassName 
    namespace_specifier ClassName 

 
     namespace_specifier:  
         :: 
         namespaceName :: 
         namespace_specfier namespaceName :: 
         
     init_method:  
         class-method-identifier 
 
     deinit_method:  
         class-method-identifier 

 

Constraints 

This pragma requires the compilation language to be C++. If the compilation language is 
not C++ and this pragma is encountered, then an error is issued and this pragma is 
ignored. 

The class identified will become a Stride Test Class.  

The test class identified must:  

• Have a public constructor.  
• The constructor may have parameters, but they must all be POD type.  
• Have one or more member functions that suitable as a test method. For a member 

function to be a test method it must  
o be declared within the test class (method not declared, but inherited from a 

base class cannot be test methods) 
o have a return type of bool, an integral type (signed or unsigned long, int, 

short, char) or void.  
o have an empty parameter list. That is, declared as f() or f(void).  
o not be a templatized function  
o not be an overloaded operator 
o The class cannot be a pure virtual class 
o not be a static member.  

• Cannot be a templated class.  
• Cannot be a nested class.  
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The class specifier identifies the test class. If the test class is not in the global namespace 
it must include the namespace specifier for the class.  If the test class is in the global 
namespace, that may be explicitly indicated by the global namespace specifier “::”. 

If an init_method (initialization method) is specified, it must be the method name of a test 
class method. This method will no longer be a test class method with this specification. 

If a deinit_method (deinitialization method) is specified, it must be the method name of a 
test class method. This method will no longer be a test class method after this 
specification. 
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1.3.24 scl_test_setup  

Identifies of the setup fixture of a previously-identified scl_test_cclass, scl_test_class, or 
scl_test_flist. 

Syntax 
#pragma scl_test_setup (test_specifier, function_name ) ;opt 
 
test_specifier : 
    cclass_specifier 
    class_specifier 
    test_unit_name 

 
cclass_specifier : 
    struct-identifier 
 
class_specifier : 
    ClassName 
    namespace_specifier ClassName 
 
test_unit_name : 
    identifier 

 
     namespace_specifier:  
         :: 
         namespaceName :: 
         namespace_specfier namespaceName :: 
      
     function_name:  
         class-method-identifier 
 routine-identifier 
        

Constraints 

This pragma identifies the setup fixture of an existing test_cclass (i.e. a struct with 
scl_cclass applied to it), test_class (i.e. a class with scl_test_class applied to it), or an 
existing test unit (i.e. name with scl_test_flist applied to it). 

If the setup fixture is specified using a class specifier, the method must come from the 
pool of test methods. Once identified as a setup fixture the method is no longer a test 
method.  

There may be only one setup fixture per test c-class (scl_test_cclass), test class 
(scl_test_class) or test unit (scl_test_flist).  

The c-class specifier must match the struct specifier of a prior consumed scl_test_cclass 
pragma.  

The class specifier must match the class specifier of an scl_test_class pragma that has 
already been consumed.  

The test unit name must match the test unit name of an scl_test_flist pragma that has 
already been consumed. 
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1.3.25 scl_test_teardown  

Identifies of the teardown fixture of a previously-identified scl_test_cclass, 
scl_test_class, or scl_test_flist. 

Syntax 
#pragma scl_test_teardown (test_specifier, function_name ) ;opt 
 
test_specifier : 
    cclass_specifier 
    class_specifier 
    test_unit_name 

 
cclass_specifier : 
    struct-identifier 
 
class_specifier : 
    ClassName 
    namespace_specifier ClassName 
 
test_unit_name : 
    identifier 

 
     namespace_specifier:  
         :: 
         namespaceName :: 
         namespace_specfier namespaceName :: 
      
     function_name:  
         class-method-identifier 
 routine-identifier 
        

Constraints 

This pragma identifies the teardown fixture of an existing test_class (i.e. a class with 
scl_test_class applied to it) or an existing test unit (i.e. name with scl_test_flist applied to 
it). 

If the teardown fixture is specified using a class specifier, the method must come from 
the pool of test methods. Once identified as a teardown fixture the method is no longer a 
test method.  

There may be only one teardown fixture per test c-class (scl_test_cclass), test class 
(scl_test_class) or test unit (scl_test_flist).  

The c-class specifier must match the struct specifier of a prior consumed scl_test_cclass 
pragma.  

The class specifier must match the class specifier of a prior consumed scl_test_class 
pragma.  

The test unit name must match the test unit name of a prior consumed scl_test_flist 
pragma.  
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1.3.26 scl_test_flist 

Associates a test unit name with a list of test functions. 

Syntax 
#pragma scl_test_flist ( test-unit-name , test-function-name { , 
test-function-name } ) ;opt 
 
test-unit-name : 

string-literal-name 
 

string-literal-name : 
“identifier” 
 

string-literal-name : 
“identifier” 
 

test-function-name : 
identifier 

    

Constraints 

Usage of this pragma requires an include of  srtest.h. 

The test-unit-name may not have been specified with a prior scl_test_flist pragma.  

The test-unit-name may not be the name of an existing routine.  

The test-function-name(s) not be a specifier(s) of other pragmas. It may not be used for 
pragmas like scl_ptr_flist. It also means that its return value may not be casted using 
scl_cast. 

The function declared for test-function-name may not be declared static. 

The function declared for test-function-name may not be repeated in the pragma. 

The function declared for test-function-name may not exist in any other scl_test_flist 
pragma. 

In C++ mode, the function declared for test-function-name must have used ‘extern “C”’. 

The function declared for test-function-name must have a void parameter list. 

The function declared for function-name must return a pass/fail results. The return type 
may be declared void or an integer type (bool is acceptable in C++ mode). If void is the 
return type, any calls to the test function default as successful. 

Semantics 

This pragma signifies a given test-unit-name is to be a collection of test functions. 
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1.3.27 scl_test_cclass 

Associates a class (or C struct) as a composite type containing a list of test functions. 

Syntax 
#pragma scl_test_cclass ( struct-specifier , init-function-name { , 
deinit-function-name } ) ;opt 
 
struct-specifier : 
    identifier 

 
init-function-name : 

identifier 
 

deinit-function-name : 
identifier 

   

Constraints 

Usage of this pragma requires an include of  srtest.h. 

The struct-specifier may not have been specified with a prior scl_test_cclass pragma.  

The struct -specifier must be of type struct or class. 

The struct -specifier must be a plain old data type. 

The struct -specifier may not be a template class. 

The struct -specifier may not be a nested class. 

The init-function-name must be an existing function. 

The init-function-name must not have been pragmatized using any prior declared or later 
declared pragmas (i.e. scl_func, scl_function. scl_test_function, scl_ptr_flist). 

The deinit-function-name may not have the same name as the init-function-name. 

The deinit-function-name must be an existing function if specified with the pragma. 

The deinit-function-name must not have been pragmatized using any prior declared or 
later declared pragmas (i.e. scl_func, scl_function. scl_test_function, scl_ptr_flist). 

Semantics 

This pragma signifies a given struct-specifier defines a collection of test functions. 



STRIDE Communication Language Reference  

 Copyright © 2001 – 2008 S2 Technologies, Inc. 97 

1.3.28 Other Pragmas 

                                                

In addition to the pragmas specific to SCL, the SCL language translator accepts a number 
of pragmas that are commonly accepted by other compilers. These are detailed here 

1.4.1 #pragma once 

The #pragma once, when placed at the beginning of a header file indicates that the file is 
written in such a way that including it several times has the same effect as including it 
once. 

1.4.2 #pragma pack 

The pack pragma is used to alter the layout of fields within a struct or union by 
overriding the alignment policy currently in effect. Thus the pack pragma may alter the 
layout so that the members are more closely packed than they would be otherwise.  

Syntax 
#pragma pack (alignment-value) ;opt 
#pragma pack ();opt 
#pragma pack (show) ;opt 
 
alignment-value: 
    1, 2, 4, 8, 16, 32, 64, 128 
 
 

Constraints 

By default the packing value is “not set”. All structures and unions are layed out 
according to the target characteristics in effect for the compilation.  

Pragma pack with  a specified alignment-value sets the pack alignment for subsequent 
declarations until the end of compilation or until another pack pragma is encountered. 6 

Pragma pack with no argument resets off any earlier specification of a pack pragma to the 
default value. 

Pragma pack with the argument “show” will display a warning specifying the pack 
alignment-value currently in effect.  

  

 
6 A pack pragma has the potential to affect a structure layout only if the pack value is less than the 
alignment requirements of at least one of the structure members. The alignment requirements are for each 
type are part of the target characteristics specified for each compilation process. 
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1.4.3  #pragma warning 

This functionality is applicable only when compiling with Microsoft compatibility.  The 
warning pragma predominantly appears when including Microsoft include files. The 
compiler will ignore these warning pragmas during compilation. It will not generate a 
warning for these pragmas being unrecognized nor will it remember the warning’s 
directive to generate a warning or to turn off future warnings.  

#pragma warning( "ABC" ) // does not generate a warning  

#pragma warning( disable : 4412 ) // does not disable 4412 for later occurrences. 
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