Difference between revisions of "Test Units Overview"

From STRIDE Wiki
Jump to: navigation, search
(Using TestPoints)
(Unique STRIDE Test Unit Features)
 
(44 intermediate revisions by 4 users not shown)
Line 1: Line 1:
== Introduction  ==
+
== What are STRIDE Test Units? ==
  
STRIDE enables testing of C/C++ code through the use of xUnit-style test units. Test units can be written by developers, captured using an SCL pragma, and executed from the host. STRIDE facilitates the execution of some or all of the test units by automatically creating entry points for the execution of test units on the target.  
+
'''STRIDE Test Units''' is a general term for [http://en.wikipedia.org/wiki/XUnit xUnit-style] test modules running within the STRIDE runtime framework. These tests--written in C and C++--are compiled and linked with your embedded software and run in-place on your target hardware. They are suitable for both developer unit testing as well as end-to-end integration testing.
  
== Overview ==
+
An external [[Stride Runner|Test Runner]] is provided which controls the execution of the tests and publishes test results to the local file system and optionally to S2's Internet [[STRIDE Test Space]].
  
The required steps to get started with writing test units are as follows:
+
== Test Unit Features ==
 +
In all cases, STRIDE Test Units provide the following capabilities typical of all [http://en.wikipedia.org/wiki/XUnit xUnit-style] testing frameworks:
 +
* Specification of a test as a test method
 +
* Aggregation of individual tests into test suites which form execution and reporting units
 +
* Specification of expected results within test methods (typically by using one or more [[Test Code Macros]])
 +
* Test fixturing (optional setup and teardown)
 +
* Test parametrization (optional constructor/initialization parameters)
 +
* Automated execution
 +
* Automated results report generation
  
<ol>
+
=== Unique STRIDE Test Unit Features ===
<li>Write a test unit and capture it with one of the [[SCL_Pragmas#Test_Units|Test Units pragmas]].</li>
+
In addition, STRIDE Test Units offer these unique features:
You may simply create a C++ class with a number of test methods and SCL capture it using [[scl_test_class]] pragma:
+
; On-Target Execution
<source lang=cpp>
+
: Tests execute on the target hardware in a true operational environment. Execution and reporting is controlled from a remote desktop (Windows, Linux or FreeBSD) host
// testcpp.h
+
; Dynamic Test and Suite Generation
 
+
: Test cases and suites can be created and manipulated at runtime
class Simple
+
; [[Using Test Doubles|Test Doubles]]
{
+
: Dynamic runtime function substitution to implement on-the-fly mocks, stubs, and doubles
public:
+
; [[Test Point Testing in C/C++|Behavior Testing]] (Test Points)
    int test1() { return  0;} // PASS
+
: Support for testing of asynchronous activities occurring in multiple threads
    int test2() { return 23;} // FAIL <>0
+
; Multiprocess Testing Framework
    bool test3() { return true;} // PASS
+
: Support for testing across multiple processes running simultaneously on the target
    bool test4() { return false;} // FAIL
+
; Automatic Timing Data Collection
};
+
: Duration are automatically measured for each test case.
 
+
; Automatic Results Publishing to Local Disk and Internet
#ifdef _SCL
+
: Automatic publishing of test results to [[STRIDE Test Space]]
#pragma scl_test_class(Simple)
 
#endif
 
</source>
 
 
 
Or, if you are writing in C, create a set of global functions and SCL capture them with [[scl_test_flist]] pragma (in more complicated scenarios when initialization is required [[scl_test_cclass]] pragma could be a better choice):
 
<source lang=c>
 
// testc.h
 
 
 
#ifdef __cplusplus
 
extern "C" {
 
#endif
 
 
 
int test1(void)
 
{
 
    return 0; // PASS
 
}
 
 
 
int test2(void)
 
{
 
    return 23; // FAIL <>0
 
}
 
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist("Simple", test1, test2)
 
#endif
 
</source>
 
 
 
<li>Build and generate the IM code using STRIDE [[Build Tools]]:</li>
 
<pre>
 
> s2scompile --c++ testcpp.h
 
> s2scompile --c testc.h
 
> s2sbind --output=test.sidb testcpp.h.meta testc.h.meta
 
> s2sinstrument --im_name=test test.sidb
 
</pre>
 
''If using [[STRIDE Studio]], create a new workspace (or open an existing one), add the above source files, adjust your compiler settings, build and generate the IM manually through the UI, or write custom scripts to automate the same sequence.''
 
<li>Build the generate IM code along with the rest of the source to create your application's binary.
 
<li>Download your application to the Target and start it.</li>
 
<li>Execute your test units and publish results using the [[Test_Runners#TestUnitRun.pl|Test Unit Runner]].</li>
 
<pre>
 
> perl testunitrun.pl -u -d test.sidb
 
</pre>
 
''If using [[STRIDE Studio]], you can execute individual test units interactively by opening the user interface view corresponding to the test unit you would like to execute, then call it. Further more you may write a simple script to automate your [[#Scripting_a_Test_Unit|test units execution]] and result publishing.''
 
</ol>
 
 
 
== Requirements  ==
 
 
 
Several variations on typical xUnit-style test units are supported. The additional supported features include:  
 
 
 
*Test status can be set using STRIDE Runtime APIs ''or'' by specifying simple return types for test methods.
 
*Integral return types: 0 = PASS; &lt;&gt; 0 = FAIL
 
*C++ bool return type: true = PASS; false = FAIL
 
*void return type with no explict status setting is assumed PASS
 
*Test writers can create additional child suites and tests at runtime by using Runtime APIs.
 
*We do not rely on exceptions for reporting of status.
 
*One of the [[SCL_Pragmas#Test_Units|Test Unit pragmas]] must be applied.
 
 
 
The STRIDE test class framework has the following requirements of each test class:
 
 
 
*The test class must have a suitable default (no-argument) constructor.
 
*The test class must have one or more public methods suitable as test methods. Allowable test methods always take no arguments (void) and return either void, simple integer types (int, short, long or char) or bool. At this time, we do not allow typedef types or macros for the return values specification.
 
*The [[scl_test_class]] pragma must be applied to the class.
 
 
 
 
 
=== Simple example using return values for status  ===
 
==== Using a Test Class ====
 
 
 
<source lang=cpp>
 
#include <srtest.h>
 
 
 
class Simple {
 
public:
 
    int tc_Int_ExpectPass() {return 0;}
 
    int tc_Int_ExpectFail() {return -1;}
 
    bool tc_Bool_ExpectPass() {return true;}
 
    bool tc_Bool_ExpectFail() {return false;}
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(Simple)
 
#endif
 
</source>
 
 
 
==== Using a Test Function List ====
 
<source lang=c>
 
#include <srtest.h>
 
 
 
#ifdef __cplusplus
 
extern "C" {
 
#endif
 
 
 
int tf_Int_ExpectPass(void) {return 0;}
 
int tf_Int_ExpectFail(void) {return -1;}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist("Simple", tf_Int_ExpectPass, tf_Int_ExpectFail)
 
#endif
 
 
 
#ifdef __cplusplus
 
}
 
#endif
 
</source>
 
 
 
=== Simple example using runtime test service APIs  ===
 
==== Using a Test Class ====
 
<source lang=cpp>
 
#include <srtest.h>
 
 
 
class RuntimeServices_basic {
 
public:  
 
  void tc_ExpectPass()
 
  {
 
    srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should pass");
 
    srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_PASS, 0);
 
  }
 
  void tc_ExpectFail()
 
  {
 
    srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should fail");
 
    srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_FAIL, 0);
 
  }
 
  void tc_ExpectInProgress()
 
  {
 
    srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should be in progress");
 
  }
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(RuntimeServices_basic)
 
#endif
 
</source>
 
 
 
==== Using a Test Function List ====
 
<source lang=c>
 
#include <srtest.h>
 
 
 
#ifdef __cplusplus
 
extern "C" {
 
#endif
 
 
 
void tf_ExpectPass(void)
 
{
 
  srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should pass");
 
  srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_PASS, 0);
 
}
 
void tf_ExpectFail(void)
 
{
 
  srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should fail");
 
  srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_FAIL, 0);
 
}
 
void tf_ExpectInProgress(void)
 
{
 
  srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should be in progress");
 
}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist("RuntimeServices_basic", tf_ExpectPass, tf_ExpectFail, tf_ExpectInProgress)
 
#endif
 
 
#ifdef __cplusplus
 
}
 
#endif
 
</source>
 
 
 
=== Simple example using srTest base class  ===
 
<source lang=cpp>
 
#include <srtest.h>
 
 
 
class MyTest : public stride::srTest {
 
public:
 
  void tc_ExpectPass()
 
  {
 
    testCase.AddComment("this test should pass");
 
    testCase.SetStatus(srTEST_PASS, 0);
 
  }
 
  void tc_ExpectFail()
 
  {
 
    testCase.AddComment("this test should fail");
 
    testCase.SetStatus(srTEST_FAIL, 0);
 
  }
 
  void tc_ExpectInProgress()
 
  {
 
    testCase.AddComment("this test should be in progress");
 
  }
 
  int tc_ChangeMyName()
 
  {
 
    testCase.AddComment("this test should have name = MyChangedName");
 
    testCase.SetName("MyChangedName");
 
    return 0;
 
  }
 
  int tc_ChangeMyDescription()
 
  {
 
    testCase.AddComment("this test should have a description set");
 
    testCase.SetDescription("this is my new description");
 
    return 0;
 
  }
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(MyTest)
 
#endif
 
</source>
 
 
 
== Runtime Test Services  ==
 
 
 
The Runtime Test Services (declared in srtest.h) are a set of APIs in the STRIDE Runtime that facilitate the writing of target based test code. These APIs make up an optional portion of the STRIDE Runtime and can be used to communicate additional information about tests to the host based reporting mechanism. These APIs also allow target test code to create additional test suites and test cases dynamically at runtime.
 
 
 
There are 2 alternate ways of accessing these APIs: through C-based functions, or through a C++ base class from which you may derive your C++ test class. These are discussed below in C Test Functions, and C++ Test Classes sections below.
 
 
 
=== C Test Functions ===
 
 
 
The following C APIs are provided:
 
 
 
*'''[[#srTestSuiteAddSuite|srTestSuiteAddSuite]]''': creates an additional sub-suite at runtime.
 
*'''[[#srTestSuiteSetName|srTestSuiteSetName]]''': sets the name of the specified suite.
 
*'''[[#srTestSuiteSetDescription|srTestSuiteSetDescription]]''': sets the description of the specified suite.
 
*'''[[#srTestSuiteAddCase|srTestSuiteAddCase]]''': creates an additional test case at runtime.
 
*'''[[#srTestCaseSetName|srTestCaseSetName]]''': sets the name of the specified test case.
 
*'''[[#srTestCaseSetDescription|srTestCaseSetDescription]]''': sets the description of the specified test case.
 
*'''[[#srTestCaseAddComment|srTestCaseAddComment]]''': adds a comment to the specified test case.
 
*'''[[#srTestCaseSetStatus|srTestCaseSetStatus]]''': explicitly sets the status for the specified test case.
 
*'''[[#srTestSuiteAddAnnotation|srTestSuiteAddAnnotation]]''': creates an annotation at runtime.
 
*'''[[#srTestAnnotationAddComment|srTestAnnotationAddComment]]''': adds a comment to the specified annotation.
 
 
 
 
 
==== srTestSuiteAddSuite ====
 
The srTestSuiteAddSuite() routine is used to add a new test suite to the specified test suite.
 
<source lang=c>
 
srTestSuiteHandle_t srTestSuiteAddSuite(srTestSuiteHandle_t tParent, const srCHAR * szName)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-  
 
| tParent
 
| Input
 
| Handle to the parent test suite to which new test suite is to be added. srTEST_SUITE_DEFAULT can be used for the default test suite.
 
|-
 
| szName
 
| Input
 
| Pointer to a null-terminated string that represents the name of test suite. If null, the default host naming scheme will be used.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
|srTestSuiteHandle_t
 
| Handle of the newly created test suite. srTEST_SUITE_INVALID indicates failure to create test suite.
 
|}
 
 
 
<source lang=c>
 
#include <srtest.h>
 
 
 
void tfsuite_addSuite(void)
 
{
 
  srTestSuiteHandle_t subSuite =
 
  srTestSuiteAddSuite(srTEST_SUITE_DEFAULT, "tf Sub Suite");
 
}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist(“testfunc”, tfsuite_addSuite)
 
#endif
 
</source>
 
 
 
==== srTestSuiteSetName ====
 
The srTestSuiteSetName() routine is used to set the name of the specified test suite.
 
<source lang=c>
 
srWORD srTestSuiteSetName(srTestSuiteHandle_t tTestSuite, const srCHAR * szName)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| tTestSuite
 
| Input
 
| Handle to a test suite. srTEST_SUITE_DEFAULT can be used for the default test suite.
 
|-
 
| szName
 
| Input
 
| Pointer to a null-terminated string representing the name of test suite. Cannot be null.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srERR
 
| Null string passed in.
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|-
 
| srTEST_WARN_STR_TRUNCATED
 
| String passed in was too large and was truncated.
 
|}
 
 
 
<source lang=c>
 
#include <srtest.h>
 
 
 
void tfsuite_setName(void)
 
{
 
  srTestSuiteSetName(srTEST_SUITE_DEFAULT, "Setting name for default suite");
 
}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist(“testfunc”, tfsuite_setName)
 
#endif
 
</source>
 
 
 
==== srTestSuiteSetDescription ====
 
The srTestSuiteSetDescription() routine is used to set the description of the specified test suite.
 
<source lang=c>
 
srWORD srTestSuiteSetDescription(srTestSuiteHandle_t tTestSuite, const srCHAR * szDescr)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| tTestSuite
 
| Input
 
| Handle to a test suite. srTEST_SUITE_DEFAULT can be used for the default test suite.
 
|-
 
| szDescr
 
| Input
 
| Pointer to a null-terminated string representing the description of test suite. Cannot be null.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srERR
 
| Null string passed in.
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|-
 
| srTEST_WARN_STR_TRUNCATED
 
| String passed in was too large and was truncated.
 
|}
 
 
 
<source lang=c>
 
#include <srtest.h>
 
void tfsuite_setDescription(void)
 
{
 
  srTestSuiteSetDescription(srTEST_SUITE_DEFAULT,
 
                            "Setting description for default suite");
 
}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist(“testfunc”, tfsuite_setDescription)
 
#endif
 
</source>
 
 
 
==== srTestSuiteAddCase ====
 
The srTestSuiteAddCase() routine is used to add a new test case to the specified test suite.
 
<source lang=c>
 
srTestCaseHandle_t srTestSuiteAddCase(srTestSuiteHandle_t tParent, const srCHAR * szName)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| tParent
 
| Input
 
| Handle to the parent test suite to which new test case is to be added. srTEST_SUITE_DEFAULT can be used for the default test suite.
 
|-
 
| szName
 
| Input
 
| Pointer to a null-terminated string that represents the name of test case. If null, the default host naming scheme will be used.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srTestCaseHandle_t
 
| Handle of the newly created test case. srTEST_CASE_INVALID indicates failure to create test case.
 
|}
 
 
 
<source lang=c>
 
#include <srtest.h>
 
 
 
void tfsuite_addCase(void)
 
{
 
  for (int count = 0; count < 5; ++count)
 
  {
 
    char szName[25];
 
    sprintf(szName, "dynamic test case %d", count);
 
    srTestCaseHandle_t test = srTestSuiteAddCase(srTEST_SUITE_DEFAULT, szName);
 
    srTEST_ADD_COMMENT_WITH_LOCATION(test, "this is a dynamic test case");
 
  }
 
}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist(“testfunc”, tfsuite_addCase)
 
#endif
 
</source>
 
 
 
==== srTestCaseSetName ====
 
The srTestCaseSetName() routine is used to set set the name of the specified test case.
 
<source lang=c>
 
srWORD srTestCaseSetName(srTestCaseHandle_t tTestCase, const srCHAR *szName)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| tTestCase
 
| Input
 
| Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case.
 
|-
 
| szName
 
| Input
 
| Pointer to a null-terminated string representing the name of test case. Cannot be null.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srERR
 
| Null string passed in.
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|-
 
| srTEST_WARN_STR_TRUNCATED
 
| String passed in was too large and was truncated.
 
|}
 
 
 
<source lang=c>
 
#include <srtest.h>
 
 
 
void tfcase_setName(void)
 
{
 
  srTestCaseSetName(srTEST_CASE_DEFAULT, "Setting name for default case");
 
}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist(“testfunc”, tfcase_setName)
 
#endif
 
</source>
 
 
 
==== srTestCaseSetDescription ====
 
The srTestCaseSetDescription() routine is used to set the description of the specified test case.
 
<source lang=c>
 
srWORD srTestCaseSetDescription(srTestCaseHandle_t tTestCase, const srCHAR * szDescr)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| tTestCase
 
| Input
 
| Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case.
 
|-
 
| szDescr
 
| Input
 
| Pointer to a null-terminated string representing the description of test case. Cannot be null.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srERR
 
| Null string passed in.
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|-
 
| srTEST_WARN_STR_TRUNCATED
 
| String passed in was too large and was truncated.
 
|}
 
 
 
<source lang=c>
 
#include <srtest.h>
 
 
 
void tfcase_setDescription(void)
 
{
 
  srTestCaseSetDescription(srTEST_CASE_DEFAULT,
 
                          "Setting description for default case");
 
}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist(“testfunc”, tfcase_setDescription)
 
#endif
 
</source>
 
 
 
==== srTestCaseAddComment ====
 
The srTestCaseAddComment() routine is used to add a comment (aka a log) to be reported with the specified test case.
 
<source lang=c>
 
srWORD srTestCaseAddComment(srTestCaseHandle_t tTestCase, const srCHAR * szLabel, const srCHAR * szFmtComment, ...)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| tTestCase
 
| Input
 
| Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case.
 
|-
 
| szLabel
 
| Input
 
| Pointer to a null-terminated string specifying the comment's label.
 
|-
 
| szFmtComment
 
| Input
 
| Pointer to a null-terminated string, which can be formatted, representing the comment. Cannot be null.
 
|-
 
| ...
 
| Input (Optional)
 
| Variable argument list to format the comment szFmtComment.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srERR
 
| Null string passed in.
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|-
 
| srTEST_WARN_STR_TRUNCATED
 
| String passed in was too large and was truncated.
 
|}
 
 
 
<source lang=c>
 
#include <srtest.h>
 
 
 
void tfcase_addComment(void)
 
{
 
  srTestCaseAddComment(srTEST_CASE_DEFAULT, "Note",
 
                      "this comment should print %s", "A STRING");
 
}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist(“testfunc”, tfcase_addComment)
 
#endif
 
</source>
 
 
 
==== srTestCaseSetStatus ====
 
The srTestCaseSetStatus() routine is used to set the result of test case.
 
<source lang=c>
 
srWORD srTestCaseSetStatus(srTestCaseHandle_t tTestCase, srTestStatus_e eStatus, srDWORD dwDuration)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| tTestCase
 
| Input
 
| Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case.
 
|-
 
| eStatus
 
| Input
 
| Result of the test.
 
|-
 
| dwDuration
 
| Input
 
| The duration of the test in clock ticks. Using “0” allows the STRIDE Runtime (Intercept Module) to set the time automatically.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|}
 
 
 
<source lang=c>
 
#include <srtest.h>
 
 
 
void tfcase_setStatus(void)
 
{
 
  srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_PASS, 0);
 
}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist(“testfunc”, tfcase_setStatus)
 
#endif
 
</source>
 
 
 
==== srTestCaseSetStatusEx ====
 
The srTestCaseSetStatusEx() routine is used to set the result of test case and allow specification of an extendedFailureCode.
 
<source lang=c>
 
srWORD srTestCaseSetStatus(srTestCaseHandle_t tTestCase, srTestStatus_e eStatus, srDWORD dwDuration, srLONG lExtendedFailureCode)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| tTestCase
 
| Input
 
| Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case.
 
|-
 
| eStatus
 
| Input
 
| Result of the test. dwDuration Input The duration of the test in clock ticks. Using “0” allows the STRIDE Runtime (Intercept Module) to set the time automatically.
 
|-
 
| lExtendedFailureCode
 
| Input
 
| The Stride framework uses the extendedFailureCode to capture the numeric results of test method when the test method fails via a numeric (non-void, nonbool) return type.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|}
 
 
 
<source lang=c>
 
#include <srtest.h>
 
 
 
void tfcase_setStatusEx(void)
 
{
 
  srTestCaseSetStatusEx(srTEST_CASE_DEFAULT, srTEST_FAIL, 0, -5);
 
}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist(“testfunc”, tfcase_setStatusEx)
 
#endif
 
</source>
 
 
 
==== srTestSuiteAddAnnotation ====
 
The srTestSuiteAddAnnotation() routine is used to add a new annotation to the specified test suite.
 
<source lang=c>
 
srTestAnnotationHandle_t srTestSuiteAddAnnotation(rTestSuiteHandle_t tParent, srTestAnnotationLevel_e eLevel, const srCHAR * szName, const srCHAR * szDescr)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| tParent
 
| Input
 
| Handle to the parent test suite to which new annotation is to be added. srTEST_SUITE_DEFAULT can be used for the default test suite.
 
|-
 
| eLevel
 
| Input
 
| Annotation level. Cannot be empty.
 
|-
 
| szName
 
| Input
 
| Pointer to a null-terminated string that represents the name of annotation. If null, the default host naming scheme will be used.
 
|-
 
| szDescr
 
| Input
 
| Pointer to a null-terminated string representing the description of annotation. If null, description will be empty.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srTestAnnotationHandle_t
 
| HHandle of the newly created annotation. srTEST_ANNOTATION_INVALID indicates failure to create annotation.
 
|}
 
 
 
<source lang=c>
 
#include <srtest.h>
 
 
 
void tfsuite_addAnnotation(void)
 
{
 
  for (int count = 0; count < 5; ++count)
 
  {
 
    char szName[25];
 
    sprintf(szName, "annotation %d", count);
 
    srTestAnnotationHandle_t annot =
 
                    srTestSuiteAddAnnotation(srTEST_SUITE_DEFAULT,
 
                                              srTEST_ANNOTATION_LEVEL_ERROR,
 
                                              szName,
 
                                              "description of annotation");
 
  }
 
}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist(“testfunc”, tfsuite_addAnnotation)
 
#endif
 
</source>
 
 
 
==== srTestAnnotationAddComment ====
 
The srTestAnnotationAddComment() routine is used to add a comment (aka a log) to be reported with the specified annotation.
 
<source lang=c>
 
srWORD srTestAnnotationAddComment(srTestAnnotationHandle_t tTestAnnotation, const srCHAR * szLabel, const srCHAR * szFmtComment, ...)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| tTestAnnotation
 
| Input
 
| Handle to an annotation created using srTestSuiteAddAnnotation.
 
|-
 
| szLabel
 
| Input
 
| Pointer to a null-terminated string for the label. If null, the default label will be applied.
 
|-
 
| szFmtComment
 
| Input
 
| Pointer to a null-terminated string, which can be formatted, representing the comment. Cannot be null.
 
|-
 
| ...
 
| Input (Optional)
 
| Variable argument list to format the comment szFmtComment.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srERR
 
| Null string passed in.
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|-
 
| srTEST_WARN_STR_TRUNCATED
 
| String passed in was too large and was truncated.
 
|}
 
 
 
<source lang=c>
 
#include <srtest.h>
 
 
 
void tfsuiteAnnotation_addComment(void)
 
{
 
  srTestAnnotationHandle_t annot =
 
                          srTestSuiteAddAnnotation(srTEST_SUITE_DEFAULT,
 
                                                    srTEST_ANNOTATION_LEVEL_ERROR,
 
                                                    “annot”,
 
                                                    “annot description”);
 
  srTestAnnotationAddComment(annot,
 
                            srNULL,
 
                            "this comment should print %s", "A STRING");
 
}
 
 
 
#ifdef _SCL
 
#pragma scl_test_flist(“testfunc”, tfsuiteAnnotation_addComment)
 
#endif
 
</source>
 
 
 
=== C++ Test Classes ===
 
The Runtime Test Services C APIs work equally well from C test functions and C++ test classes. If, however, you are using C++ it might be more convinient for you to derive your C++ test classes from the Runtime Test Services C++ base class, ''srTest''. That way you will have access to a set of simpler to use C++ classes.
 
 
 
The following C++ classes are provided:
 
* '''[[#class srTest|class srTest]]''' - base test class
 
* '''[[#class srTestSuite|class srTestSuite]]''' - represents a test suite
 
* '''[[#class srTestCase|class srTestCase]]''' - represents a test case
 
* '''[[#class srTestAnnotation|class srTestAnnotation]]''' - represents a test annotation
 
 
 
==== class srTest ====
 
The srTest class provides two Member Objects:
 
*''testSuite'' of class srTestSuite
 
*''testCase''of class srTestCase
 
 
 
==== class srTestSuite ====
 
The srTest class provides the folowing methods:
 
 
 
===== method AddSuite =====
 
The AddSuite method is used to add a new test suite.
 
<source lang=cpp>
 
srTestSuite AddSuite(const srCHAR * szName = srNULL)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
|szName
 
| Input (Optional)
 
| Pointer to null-terminated string that represents the name of test suite. If empty, the default host naming scheme will be used.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srTestSuite
 
| Newly created test suite class.
 
|}
 
 
 
<source lang=cpp>
 
#include <srtest.h>
 
 
 
class srtest_class : public stride::srTest
 
{
 
public:
 
  void suiteAddSuite()
 
  {
 
    stride::srTestSuite suite = testSuite.AddSuite("tc Sub Suite");
 
  }
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(srtest_class)
 
#endif
 
</source>
 
 
 
===== method SetName =====
 
The SetName method is used to set the name of test suite.
 
<source lang=cpp>
 
srWORD SetName(const srCHAR * szName)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| szName
 
| Input
 
| Pointer to null-terminated string representing the name of test suite. Cannot be empty.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srERR
 
| Null string passed in.
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|-
 
| srTEST_WARN_STR_TRUNCATED
 
| String passed in was too large and was truncated.
 
|}
 
 
 
<source lang=cpp>
 
#include <srtest.h>
 
 
 
class srtest_class : public stride::srTest
 
{
 
public:
 
  void suiteSetName()
 
  {
 
    testSuite.SetName("Setting name for suite");
 
  }
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(srtest_class)
 
#endif
 
</source>
 
 
 
===== method SetDescription =====
 
The SetDescription method is used to set the description of test suite.
 
<source lang=cpp>
 
srWORD SetDescription(const srCHAR * szDescr)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| szDescr
 
| Input
 
| Pointer to null-terminated string representing the description of test suite. Cannot be empty.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srERR
 
| Null string passed in.
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|-
 
| srTEST_WARN_STR_TRUNCATED
 
| String passed in was too large and was truncated.
 
|}
 
 
 
<source lang=cpp>
 
#include <srtest.h>
 
 
 
class srtest_class : public stride::srTest
 
{
 
public:
 
  void suiteSetDescription()
 
  {
 
    testSuite.SetDescription("Setting description for suite");
 
  }
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(srtest_class)
 
#endif
 
</source>
 
 
 
===== method AddCase =====
 
The AddCase method is used to add a new test case to test suite.
 
<source lang=cpp>
 
srTestCase AddCase(const srCHAR * szName = srNULL)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| szName
 
| Input (Optional)
 
| Pointer to null-terminated string that represents the name of test case. If empty, the default host naming scheme will be used.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srTestCase
 
| Newly created test case class.
 
|}
 
<br>
 
'''Example'''
 
<source lang=cpp>
 
#include <srtest.h>
 
#include <sstream>
 
 
 
class srtest_class : public stride::srTest
 
{
 
public:
 
  void suiteAddSuite()
 
  {
 
    const std::string prefix("dynamic test case ");
 
    for (int count = 0; count < 5; ++count)
 
    {
 
      std::stringstream strm;
 
      strm << prefix << count;
 
      stride::srTestCase tc = testSuite.AddCase(strm.str().c_str());
 
      tc.AddComment("this is a dynamic test case");
 
      tc.SetStatus(srTEST_PASS);
 
    }
 
  }
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(srtest_class)
 
#endif
 
</source>
 
 
 
===== method AddAnnotation =====
 
The AddAnnotation method is used to add a new annotation to test suite.
 
<source lang=cpp>
 
srTestAnnoation AddAnnotation(srTestAnnotationLevel_e eLevel, const srCHAR * szName = srNULL, const srCHAR * szDescr = srNULL)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| eLevel
 
| Input
 
| Annotation level. Cannot be empty.
 
|-
 
| szName
 
| Input (Optional)
 
| Pointer to null-terminated string that represents the name of annotation. If empty, the default host naming scheme will be used.
 
|-
 
| szDescr
 
| Input (Optional)
 
| Pointer to null-terminated string that represents the description of annotation. If empty, the description will be blank.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srTestAnnotation
 
| Newly created annotation class.
 
|}
 
 
 
<source lang=cpp>
 
#include <srtest.h>
 
#include <sstream>
 
 
 
class srtest_class : public stride::srTest
 
{
 
public:
 
  void suiteAddAnnotation()
 
  {
 
    for (int count = 0; count < 5; ++count)
 
    {
 
      std::stringstream strmName;
 
      std::stringstream strmDescr;
 
      strmName << "annotation " << count;
 
      strmDescr << "description of annotation " << count;
 
      stride::srTestAnnotation ta =
 
                testSuite.AddAnnotation(srTEST_ANNOTATION_LEVEL_INFO,
 
                                        strmName.str().c_str(),
 
                                        strmDescr.str().c_str());
 
    }
 
  }
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(srtest_class)
 
#endif
 
</source>
 
 
 
==== class srTestCase ====
 
The srTestCase class provides the following methods:
 
 
 
===== method SetName =====
 
The SetName method is used to set the name of test case.
 
<source lang=cpp>
 
srWORD SetName(const srCHAR * szName)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| szName
 
| Input
 
| Pointer to null-terminated string representing the name of test case. Cannot be empty.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srERR
 
| Null string passed in.
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|-
 
| srTEST_WARN_STR_TRUNCATED
 
| String passed in was too large and was truncated.
 
|}
 
 
 
<source lang=cpp>
 
#include <srtest.h>
 
 
 
class srtest_class : public stride::srTest
 
{
 
public:
 
  void caseSetName()
 
  {
 
    testCase.SetName("Setting name for case");
 
  }
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(srtest_class)
 
#endif
 
</source>
 
 
 
===== method SetDescription =====
 
The SetDescription method is used to set the description of test case.
 
<source lang=cpp>
 
srWORD SetDescription(const srCHAR * szDescr)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| szDescr
 
| Input
 
| Pointer to null-terminated string representing the description of test case. Cannot be empty.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srERR
 
| Null string passed in.
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|-
 
| srTEST_WARN_STR_TRUNCATED
 
| String passed in was too large and was truncated.
 
|}
 
 
 
<source lang=cpp>
 
#include <srtest.h>
 
 
 
class srtest_class : public stride::srTest
 
{
 
public:
 
  void caseSetDescription()
 
  {
 
    testCase.SetDescription("Setting description for case");
 
  }
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(srtest_class)
 
#endif
 
</source>
 
 
 
===== method AddComment =====
 
The AddComment method is used to add a comment to test case.
 
<source lang=cpp>
 
srWORD AddComment(const srCHAR * szFmtComment, ...)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| szFmtComment
 
| Input
 
| Pointer to null-terminated string, which can be formatted, representing the comment. Cannot be empty.
 
|-
 
| ...
 
| Input (Optional)
 
| Variable argument list to format the comment szFmtComment.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srERR
 
| Null string passed in.
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|-
 
| srTEST_WARN_STR_TRUNCATED
 
| String passed in was too large and was truncated.
 
|}
 
 
 
<source lang=cpp>
 
#include <srtest.h>
 
 
 
class srtest_class : public stride::srTest
 
{
 
public:
 
  void caseAddComment()
 
  {
 
    testCase.AddComment("this comment should print %s", "A STRING");
 
  }
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(srtest_class)
 
#endif
 
</source>
 
 
 
===== method SetStatus =====
 
The SetStatus method is used to set the result of the default test case.
 
<source lang=cpp>
 
srWORD SetStatus(srTestStatus_e eStatus, srDWORD dwDuration = 0)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| eStatus
 
| Input
 
| Result of the test.
 
|-
 
| dwDuration
 
| Input (Optional)
 
| The duration of the test in clock ticks. The default is 0.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle.
 
|}
 
 
 
<source lang=cpp>
 
#include <srtest.h>
 
 
 
class srtest_class : public stride::srTest
 
{
 
public:
 
  void caseSetStatus()
 
  {
 
    testCase.SetStatus(srTEST_INPROGRESS, 0);
 
  }
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(srtest_class)
 
#endif
 
</source>
 
 
 
==== class srTestAnnotation ====
 
The srTestAnnotation class provides the following methods:
 
 
 
===== method AddComment =====
 
The AddComment method is used to add a comment to an annotation created under a test suite.
 
<source lang=cpp>
 
srWORD AddComment(const srCHAR * szLabel, const srCHAR * szFmtComment, ...)
 
</source>
 
 
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
 
| '''Parameters'''
 
| '''Type'''
 
| '''Description'''
 
|-
 
| szLabel
 
| Input
 
| Pointer to null-terminated string for the label. If null, the default label will be applied.
 
|-
 
| szFmtComment
 
| Input
 
| Pointer to null-terminated string, which can be formatted, representing the comment. Cannot be empty.
 
|-
 
| ...
 
| Input (Optional)
 
| Variable argument list to format the comment szFmtComment.
 
|}
 
<br>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
 
| '''Return Value'''
 
| ''' Description'''
 
|-
 
| srOK
 
| Success
 
|-
 
| srERR
 
| Null string passed in.
 
|-
 
| srTEST_ERR_HANDLE_INVALID
 
| Invalid handle passed in.
 
|-
 
| srTEST_WARN_STR_TRUNCATED
 
| String passed in was too large and was truncated.
 
|}
 
 
 
<source lang=cpp>
 
#include <srtest.h>
 
 
 
class srtest_class : public stride::srTest
 
{
 
public:
 
  void suiteAnnotationAddComment()
 
  {
 
    stride::srTestAnnotation ta =
 
                testSuite.AddAnnotation(srTEST_ANNOTATION_LEVEL_INFO,
 
                                        "annot",
 
                                        "annot description");
 
    ta.AddComment("this comment on annotation should print %s", "A STRING");
 
  }
 
};
 
 
 
#ifdef _SCL
 
#pragma scl_test_class(srtest_class)
 
#endif
 
</source>
 
 
 
Refer to the [[Media:s2sSCLReferenceGuide.pdf|SCL Reference Guide]] or the [[Media:s2sRuntime.pdf|Runtime Developer's Guide]] for detailed information about any of these APIs.
 
 
 
== Test Macros ==
 
 
 
The STRIDE Test Unit implementation also provides a set of Test Macros (declared in srtest.h) available for use within test methods. The macros are optional - you are not required to use them in your test units. They provide shortcuts for testing assertions and automatic report annotation in the case of failures. 
 
 
 
The macros can be used in C++ and C test unit code (Note that there is no C version of exceptions test).
 
 
 
=== General guidelines for all macros ===
 
 
 
srEXPECT_xx macros will set the current test case to fail (if it hasn’t already been set) and produce an annotation in the report if the expectation fails. If the expectation succeeds, there is no action.
 
 
 
srASSERT_xx macros will set the current test case to fail (if it hasn’t already been set) and insert an annotation into the report if the assertion fails. In addition, a return from the current function will occur. srASSERT_xx macros can only be used in test functions which return void. If the assertion succeeds there is no action.
 
 
 
srLOG macro will add a new comment to the current test case and produce an annotation in the report with specified level of importance.
 
 
 
The report annotation produced by a failed macro always includes the source file and line along with details about the condition that failed and the failing values.
 
 
 
=== Boolean Macros ===
 
The boolean macros take a single condition expression, ''cond'', that evaluates to an integral type or bool. The condition will be evaluated once. if ''cond'' evaluates to non-zero the assertion or expectation fails. When a failure occurs the report will be annotated.
 
 
 
{| class="prettytable"
 
| colspan="3" | '''Boolean'''
 
 
 
|-
 
| srEXPECT_TRUE(''cond'');
 
| srASSERT_TRUE(''cond'');
 
| ''cond'' is true
 
 
 
|-
 
| srEXPECT_FALSE(''cond'');
 
| srASSERT_FALSE(''cond'');
 
| ''cond'' is false
 
 
 
|}
 
 
 
=== Comparison Macros ===
 
 
 
Comparison macros take two operands and compare them using the indicated operator. The comparison macros will work for primitive types as well as objects that have the corresponding comparison operator implemented. 
 
 
 
{| class="prettytable"
 
| colspan="3" | '''Comparison'''
 
 
 
|-
 
| srEXPECT_EQ(''val1'', ''val2'');
 
| srASSERT_EQ(''val1'', ''val2'');
 
| ''val1'' == ''val2''
 
 
 
|-
 
| srEXPECT_NE(''val1'', ''val2'');
 
| srASSERT_NE(''val1'', ''val2'');
 
| ''val1'' != ''val2''
 
 
 
|-
 
| srEXPECT_LT(''val1'', ''val2'');
 
| srASSERT_LT(''val1'', ''val2'');
 
| ''val1''<nowiki> < </nowiki>''val2''
 
 
 
|-
 
| srEXPECT_LE(''val1'', ''val2'');
 
| srASSERT_LE(''val1'', ''val2'');
 
| ''val1''<nowiki> <= </nowiki>''val2''
 
 
 
|-
 
| srEXPECT_GT(''val1'', ''val2'');
 
| srASSERT_GT(''val1'', ''val2'');
 
| ''val1'' > ''val2''
 
 
 
|-
 
| srEXPECT_GE(''val1'', ''val2'');
 
| srASSERT_GE(''val1'', ''val2'');
 
| ''val1'' >= ''val2''
 
 
 
|}
 
 
 
=== C String Comparison Macros ===
 
 
 
C String Comparison Macros are intended only for use with C-style zero terminated strings. The strings can be char or wchar_t based. In particular, these macros should not be used for object of one or other string class, since such classes have overloaded comparison operators. The standard comparison macros should be used instead.
 
 
 
* An empty string will appear in error message output as “”. A null string will appear as NULL with no surrounding quotes. Otherwise all output strings are quoted.
 
* The type of str1 and str2 must be compatible with ''const char*'' or ''const wchar_t*''.
 
 
 
{| class="prettytable"
 
| colspan="3" | '''C-string comparison'''
 
 
 
|-
 
| srEXPECT_STREQ(''str1'', ''str2'');
 
| srASSERT_STREQ(''str1'', ''str2'');
 
| ''str1'' and ''str2'' have the same content
 
 
 
|-
 
| srEXPECT_STRNE(''str1'', ''str2'');
 
| srASSERT_STRNE(''str1'', ''str2'');
 
| ''str1'' and ''str2'' have different content
 
 
 
|-
 
| srEXPECT_STRCASEEQ(''str1'', ''str2'');
 
| srASSERT_STRCASEEQ(''str1'', ''str2'');
 
| ''str1'' and ''str2'' have the same content, ignoring case.
 
 
 
|-
 
| srEXPECT_STRCASENE(''str1'', ''str2'');
 
| srASSERT_STRCASENE(''str1'', ''str2'');
 
| ''str1'' and ''str2'' have different content, ignoring case.
 
 
 
|}
 
 
 
=== Exception Macros ===
 
Exception macros  are used to ensure that expected exceptions are thrown. They require exception support from the target compiler. If the target compiler does not have exception support the macros cannot be used and must be disabled.
 
 
 
{| class="prettytable"
 
| colspan="3" | '''Exceptions'''
 
 
 
|-
 
| srEXPECT_THROW(statement, ex_type);
 
| srASSERT_THROW(statement, ex_type);
 
| ''statement'' throws an exception of type ''ex_type''
 
 
 
|-
 
| srEXPECT_THROW_ANY(''statement'');
 
| srASSERT_THROW_ANY(''statement'');
 
| ''statement'' throws an exception (type not important)
 
 
 
|-
 
| srEXPECT_NO_THROW(''statement'');
 
| srASSERT_NO_THROW(''statement'');
 
| ''statement'' does not throw an exception
 
 
 
|}
 
 
 
=== Predicate Macros ===
 
Predicate macros allow user control over the pass/fail decision making in a macro. A predicate is a function returning bool that is implemented by the user but passed to the macro. Other arguments for the predicate are also passed to the macro. The macros allow for predicate functions with up to four parameters.
 
 
 
{| class="prettytable"
 
| colspan="3" | '''Predicates'''
 
 
 
|-
 
| srEXPECT_PRED1(''pred'', ''val1'')
 
| srASSERT_PRED1(''pred'', ''val1'')
 
| ''pred''(''val1'') returns true
 
 
 
|-
 
| srEXPECT_PRED2(''pred'', ''val1'', ''val2'')
 
| srASSERT_PRED2(''pred'', ''val1'', ''val2'')
 
| ''pred''(''val1'', ''val2'') returns true
 
 
 
|-
 
| …(up to arity of 4)
 
|
 
|
 
 
 
|}
 
All predicate macros require a predicate function function which returns bool. The predicate macros allow functions with one to 4 parameters. Following are the report annotations resulting from expectation or assertion failures.
 
 
 
=== Floating Point Comparison Macros ===
 
Floating point macros are for comparing equivalence (or near equivalence) of floating point numbers. These macros are necessary since because equivalence comparisons for floating point numbers will often fail due to round-off errors.
 
 
 
{| class="prettytable"
 
| colspan="3" | '''Floating Point comparison'''
 
 
 
|-
 
| srEXPECT_NEAR(val1, val2, epsilon);
 
| srASSERT_NEAR(val1, val2, epsilon);
 
| The absolute value of the difference between val1 and val2 is epsilon.
 
|}
 
 
 
=== Log Macros ===
 
Log macros allow message logging with level of importance - error, warning, or info.
 
 
 
Note that the srLOG() macro can be used in threads other than the thread that a test is running on.
 
 
 
{| class="prettytable"
 
| colspan="2" | '''Logging'''
 
 
 
|-
 
| srLOG_ERROR(''message'')
 
| ''message'' is a char* to a null-terminated string
 
|-
 
| srLOG_WARNING(''message'')
 
| ''message'' is a char* to a null-terminated string
 
|-
 
| srLOG_INFO(''message'')
 
| ''message'' is a char* to a null-terminated string
 
|}
 
 
 
=== Dynamic Test Case Macros ===
 
The macros presented so far are not capable of dealing with dynamic test cases. In order to handle dynamic test cases, each of the macros requires another parameter which is the test case to report against. Other than this, these macros provide exactly equivalent functionality to the non-dynamic peer. The dynamic macros are listed below. All require a test case, value of type srTestCaseHandle_t from srtest.h,  to be passed as the first parameter).
 
 
 
{| class="prettytable"
 
| '''''Nonfatal assertion'''''
 
| '''''Fatal Assertion'''''
 
 
 
|-
 
| colspan="2" | '''Boolean'''
 
 
 
|-
 
| srEXPECT_TRUE_DYN(tc, ''cond'');
 
| srASSERT_TRUE_DYN(tc, ''cond'');
 
 
 
|-
 
| srEXPECT_FALSE_DYN(tc, ''cond'');
 
| srASSERT_FALSE_DYN(tc, ''cond'');
 
 
 
|-
 
| colspan="2" | '''Comparison'''
 
 
 
|-
 
| srEXPECT_EQ_DYN(tc, ''val1'', ''val2'');
 
| srASSERT_EQ_DYN(tc, ''expect'', ''val'');
 
 
 
|-
 
| srEXPECT_NE_DYN(tc, ''val1'', ''val2'');
 
| srASSERT_NE_DYN(tc, ''val1'', ''val2'');
 
 
 
|-
 
| srEXPECT_LT_DYN(tc, ''val1'', ''val2'');
 
| srASSERT_LT_DYN(tc, ''val1'', ''val2'');
 
 
 
|-
 
| srEXPECT_LE_DYN(tc, ''val1'', ''val2'');
 
| srASSERT_LE_DYN(tc, ''val1'', ''val2'');
 
 
 
|-
 
| srEXPECT_GT_DYN(tc, ''val1'', ''val2'');
 
| srASSERT_GT_DYN(tc, ''val1'', ''val2'');
 
 
 
|-
 
| srEXPECT_GE_DYN(tc, ''val1'', ''val2'');
 
| srASSERT_GE_DYN(tc, ''val1'', ''val2'');
 
 
 
|-
 
| colspan="2" | '''C-string comparison'''
 
 
 
|-
 
| srEXPECT_STREQ_DYN(tc, ''str1'', ''str2'');
 
| srASSERT_STREQ_DYN(tc, ''str1'', ''str2'');
 
 
 
|-
 
| srEXPECT_STRNE_DYN(tc, ''str1'', ''str2'');
 
| srASSERT_STRNE_DYN(tc, ''str1'', ''str2'');
 
 
 
|-
 
| srEXPECT_STRCASEEQ_DYN(tc, ''str1'', ''str2'');
 
| srASSERT_STRCASEEQ_DYN(tc, ''str1'', ''str2'');
 
 
 
|-
 
| srEXPECT_STRCASENE_DYN(tc, ''str1'', ''str2'');
 
| srASSERT_STRCASENE_DYN(tc, ''str1'', ''str2'');
 
 
 
|-
 
| colspan="2" | '''Exceptions'''
 
 
 
|-
 
| srEXPECT_THROW_DYN(statement, ex_type);
 
| srASSERT_THROW_DYN(tc, statement, ex_type);
 
 
 
|-
 
| srEXPECT_THROW_ANY_DYN(tc, ''statement'');
 
| srASSERT_THROW_ANY_DYN(tc, ''statement'');
 
 
 
|-
 
| srEXPECT_NO_THROW_DYN(tc, ''statement'');
 
| srASSERT_NO_THROW_DYN(tc, ''statement'');
 
 
 
|-
 
| colspan="2" | '''Predicates'''
 
 
 
|-
 
| srEXPECT_PRED1_DYN(tc, ''pred'', ''val1'');
 
| srASSERT_PRED1_DYN(tc, ''pred'', ''val1'');
 
 
 
|-
 
| srEXPECT_PRED2_DYN(tc, ''pred'', ''vall'', ''val2'');
 
| srASSERT_PRED2_DYN(tc, ''pred'', ''vall'', ''val2'');
 
 
 
|-
 
| …(up to arity of 4)
 
|
 
 
 
|-
 
| colspan="2" | '''Floating Point'''
 
 
 
|-
 
| srEXPECT_NEAR_DYN(tc, ''val1'', ''val2'', ''epsilon'');
 
| srASSERT_NEAR_DYN(tc, ''val1'', ''val2'', ''epsilon'');
 
 
 
|-
 
| colspan="2" | '''Logging'''
 
 
 
|-
 
| srLOG_DYN(tc, ''level'', ''message'');
 
|
 
 
 
|}
 
 
 
=== Use operator << for report annotation (C++ tests only) ===
 
 
 
In C++ test code all macros support the adding to the report annotations using the << operator. For example:
 
 
 
<source lang="cpp">
 
srEXPECT_TRUE(a != b) << "My custom message";
 
</source>
 
 
 
As delivered, the macros will support stream input annotations for all numeric types, "C" string (char* or wchar_t*) and types allowing implicit cast to numeric type or "C" string. The user may overload the << operator in order to annotate reports using any custom type. An example is below.
 
 
 
The following will compile and execute successfully given that the << operator is overloaded as shown:
 
 
 
<source lang="cpp">
 
#include <srtest.h>
 
 
 
// MyCustomClass implementation
 
class MyCustomClass
 
{
 
public:
 
  MyCustomClass(int i) : m_int(i) {}
 
 
 
private:
 
  int m_int;
 
  friend stride::Message& operator<<(stride::Message& ss, const MyCustomClass& obj);
 
};
 
 
 
stride::Message& operator<<(stride::Message& ss, const MyCustomClass& obj)
 
{
 
  ss << obj.m_int;
 
  return ss;
 
}
 
 
 
void test()
 
{
 
    MyCustomClass custom(34);
 
 
 
    srEXPECT_FALSE(true) << custom;
 
}
 
</source>
 
 
 
== Using TestPoints ==
 
Testpoints provide an easy-to-use framework for solving a class of common yet difficult unit testing problems:
 
 
 
''How can I observe and verify activity that occurs in another thread?''
 
 
 
A couple of common scenarios that become a lot more testable via testpoints include:
 
* Verification of State machine operation
 
* Verification of communication drivers
 
 
 
 
 
=== Instrumenting Target Threads ===
 
Target threads are instrumented by placing a line of the following form into the source code:
 
<source lang='c'>
 
...
 
srTEST_POINT("testpoint name");
 
...
 
</source>
 
 
 
When this code is executed it broadcasts a message via the STRIDE runtime which is detected by the test (IM) thread if it is currently looking for testpoints (i.e. in a srTEST_POINT_WAIT()). We refer to this as a "testpoint hit".
 
 
 
 
 
=== Instrumenting the Test Thread ===
 
The test thread is instrumented using these steps:
 
 
 
# Specify an expectation set (i.e. the testpoints that are expected to be hit)
 
# Register the expectation set with the STRIDE runtime
 
# Wait for the expectation set to be satisfied or a timeout to occur
 
 
 
 
 
==== Specifying the Expectation Set ====
 
An expectation set is an array of '''srTestPointExpect_t''' structures. srTestPointExpect_t is typdef'd as follows:
 
 
 
<source lang='c'>
 
typedef struct
 
{
 
    /* the label value is considered the testpoint's identity */
 
    const srCHAR *  label;
 
    /* count specifies the number of times the testpoint is expected to be hit */
 
    srDWORD        count;
 
    /* data specifies an optional string data payload */
 
    const srCHAR *  data;
 
} srTestPointExpect_t;
 
</source>
 
===== Basic Example =====
 
A typical delcaration of an expectation set looks like this:
 
<source lang='c'>
 
    srTestPointExpect_t expected[]= {
 
        {"START"},
 
        {"ACTIVE"},
 
        {"IDLE"},
 
        {"END"},
 
        {0}};
 
</source>
 
 
 
This example specifies the expectation of one hit each of the testpoints "START", "ACTIVE", "IDLE", and "END".
 
 
 
A few things to note:
 
* The end of the array is marked by a srTestPointExpect_t set to all zero values
 
* Structure members we omit in the array declaration are set to 0 by the compiler
 
* A count value of either 0 or 1 is interpreted as 1
 
* A data value 0 indicates that there is no payload data associated with this testpoint
 
 
 
==== Registering the Expectation Set ====
 
To register an expectation set, we call '''srTestPointExpect''' and receive a handle to identify the expectation  set in the next step.
 
 
 
The registration looks like this:
 
<source lang='c'>
 
srWORD handle;
 
srTestPointExpect(expected, &handle);
 
</source>
 
 
 
=== Waiting for the Expectation Set to be Satisfied ===
 
The final step is to wait for the expectation to be satisfied. We do this using the '''srTEST_POINT_WAIT()''' macro as shown below.
 
 
 
<source lang='c'>
 
srTEST_POINT_WAIT(handle, expect_flags, timeout);
 
</source>
 
 
 
The macro takes three arguments
 
{| class="prettytable"
 
| '''Argument''' || '''Description'''
 
|-
 
| <tt>handle</tt>
 
| The handle returned from the call to '''srTestPointExpect()''' used to register the expectation set
 
|-
 
| <tt>expect_flags</tt>
 
| Value that customizes the expectation in terms of testpoint hit order and testpoint exclusivity
 
|-
 
| <tt>timeout</tt>
 
| Timeout value in milliseconds; 0 means infinite timeout
 
|-|}
 
 
 
==== Expect Flags ====
 
 
 
{| class="prettytable"
 
| '''Expect Flags''' || align="center" | '''Unexpected Testpoint'''<br/>causes test failure || align="center" | '''Out of order Testpoint'''<br/>causes failure
 
|-
 
| <tt>0</tt>
 
|
 
|
 
|-
 
| <tt>srTEST_POINT_WAIT_ORDER</tt>
 
|
 
| align="center" | X
 
|-
 
| <tt>srTEST_POINT_WAIT_STRICT</tt>
 
| align="center" | X
 
 
|-
 
| <tt><nowiki>srTEST_POINT_WAIT_ORDER | srTEST_POINT_WAIT_STRICT</nowiki></tt>
 
| align="center" | X
 
| align="center" | X
 
|-|}
 
 
 
 
 
srTestPointExpect
 
 
 
== Scripting a Test Unit ==
 
 
 
To automate the execution and reporting of a Test Unit a script is required. Scripts can be written by hand or automatically generated using the Script Wizard and a corresponding template script. A scripting tool for executing a test unit is the [[AutoScript#ascript.TestUnits|AutoScript TestUnits]] collection. An [[AutoScript#ascript.TestUnits.Item|Ascript TestUnit]] object assembles all of the reporting information for the test unit and its corresponding test methods.
 
 
 
*Require usage of the [[AutoScript#ascript.TestUnits|AutoScript TestUnits]] collection
 
*Can be written by hand (refer below)
 
*Can leverage [[Templates|Templates]] via the Script Wizard
 
*Order of multiple test units dictated by SUID assignment
 
 
 
 
 
=== Single test unit example ===
 
 
 
The following example script is used to harness a test unit that has been captured using #pragma scl_test_class(Simple).
 
 
 
'''JavaScript'''
 
<source lang=javascript>
 
var tu = ascript.TestUnits.Item("Simple");
 
// Ensure test unit exists
 
if (tu != null)
 
  tu.Run();
 
</source>
 
 
 
'''Perl'''
 
<source lang=perl>
 
use strict;
 
use Win32::OLE;
 
Win32::OLE->Option(Warn => 3);
 
 
 
my $tu = $main::ascript->TestUnits->Item("Simple");
 
if (defined $tu) {
 
  $tu->Run();
 
}
 
</source>
 
 
 
=== Multiple test units example ===
 
 
 
The following example script is used to harness two test units that have been captured using #pragma scl_test_class(Simple1) and #pragma scl_test_class(Simple2).
 
 
 
'''JavaScript'''
 
<source lang=javascript>
 
var Units = ["Simple1","Simple2"];
 
 
 
// iterate through each function
 
for (i in Units)
 
{
 
  var tu = ascript.TestUnits.Item(Units[i]);
 
  if ( tu != null )
 
    tu.Run();
 
}
 
</source>
 
 
 
'''Perl'''
 
<source lang=perl>
 
use strict;
 
use Win32::OLE;
 
Win32::OLE->Option(Warn => 3);
 
 
 
# initialize an array with all selected function names
 
my @UnitNames = ("Simple1","Simple2");
 
foreach (@UnitNames) { 
 
  my $tu = $main::ascript->TestUnits->Item($_->[1]);
 
  die "TestUnit not found: $_->[1]\n" unless (defined $tu);
 
  $tu->Run();
 
}
 
</source>
 
  
 
[[Category:Test Units]]
 
[[Category:Test Units]]
[[Category:Reference]]
 

Latest revision as of 17:09, 25 September 2013

What are STRIDE Test Units?

STRIDE Test Units is a general term for xUnit-style test modules running within the STRIDE runtime framework. These tests--written in C and C++--are compiled and linked with your embedded software and run in-place on your target hardware. They are suitable for both developer unit testing as well as end-to-end integration testing.

An external Test Runner is provided which controls the execution of the tests and publishes test results to the local file system and optionally to S2's Internet STRIDE Test Space.

Test Unit Features

In all cases, STRIDE Test Units provide the following capabilities typical of all xUnit-style testing frameworks:

  • Specification of a test as a test method
  • Aggregation of individual tests into test suites which form execution and reporting units
  • Specification of expected results within test methods (typically by using one or more Test Code Macros)
  • Test fixturing (optional setup and teardown)
  • Test parametrization (optional constructor/initialization parameters)
  • Automated execution
  • Automated results report generation

Unique STRIDE Test Unit Features

In addition, STRIDE Test Units offer these unique features:

On-Target Execution
Tests execute on the target hardware in a true operational environment. Execution and reporting is controlled from a remote desktop (Windows, Linux or FreeBSD) host
Dynamic Test and Suite Generation
Test cases and suites can be created and manipulated at runtime
Test Doubles
Dynamic runtime function substitution to implement on-the-fly mocks, stubs, and doubles
Behavior Testing (Test Points)
Support for testing of asynchronous activities occurring in multiple threads
Multiprocess Testing Framework
Support for testing across multiple processes running simultaneously on the target
Automatic Timing Data Collection
Duration are automatically measured for each test case.
Automatic Results Publishing to Local Disk and Internet
Automatic publishing of test results to STRIDE Test Space